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We want to investigate the wall and chamber structure for the moduli space
of stability conditions on a surface, which surprisingly can be done with rather
elementary techniques. We are following Antony Maciocas paper, which was
referenced for the proof of the wall and chamber structure.

1 Plane
For ω ∈ NS(X) and B ∈ NSR(X) we recall, that we can define abelian subcat-
egories Aβ,ω by tilting

TB,ω = {E ∈ Coh(X)|E is torsion µω > B · ω} (1)
FB,ω = {E ∈ Coh(X)|E is torsion-free µω ≤ B · ω} (2)

We make these into stability conditions via

Zω,B = − exp(−B − iω) · v (3)

Remark 1.1. This agrees with our previous notion of tilting. We recall a
B-twisted chern character is

chB(E) = ch(E)e−B = ch(E)(1−B +
1

2
B2 − ...).

Then the twisted first chern class cB1 (E) is given by the degree 1 part (in coho-
mology), i.e.

cB1 (E) = c1(E)− rk(E)B.

We recall the notion of B-twisted stability

µω,B =
cB1 (E)ω
rk E

(4)

In Macris notes the notion of tilting is given by the condition

µω,B > 0 ⇐⇒ µω −B · ω > 0 ⇐⇒ µω > B · ω, (5)

where we are supressing the fact that we are actually asking this equation to
hold for any semistable factor.
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2 WALLS

Remark 1.2. For any t > 0, Atω,B = Aω,B . So this subcategory is actually an
entire ray in the space of stability conditions.

Let Knum(X) be the numerical Grothendieck group and we fix a class v ∈
Knum(X) and we assume v = v(a) for some a ∈ D(X). For a coherent sheaf A
on X we let v(A) denote its image in A. This can be extended to the derived
category by defining v(a) =

∑
i(−1)iv(Ai) where a ∈ D(X) and we use the con-

venient abbreviated notation Ai = Hi(a). We can also make the identification

ch : Knum(X) = Z⊕NS(X)⊕ Z[
1

2
]

v(a) 7→ (r(a), c1(a), ch2(a)[X])
(6)

First of all to get some handle on the situation we should be restricting us to
a subspace on this space. We construct it as follows. Consider (AB,ω, ZB,ω) ∈
Stab(X). We can now also consider the ray

RB,ω = {(Aω,B , Ztω,B)|0 < t ∈ R} (7)

Furthermore, if B ̸= 0 we can construct the plane

PB,ω = {(AsB,ω, ZsB,tω)|0 < t ∈ R, s ∈ R} (8)

We can simplify this by making a choices, which then lets us identify this with
the (α, β)-plane found in Macris notes. We write B = bω + γ and we get

ΩB,ω = {(Aω,sω+uγ , Zω,sω+uγ)|s, t, u ∈ R, t > 0}. (9)

If we want to identify this with Macris notation, we set B0 := uγ ∈ NSQ(X),
α := t and H := ω ∈ NS(X).

Definition 1.1. Let H,B0 as above. The (α, β)-plane is the set of stability
conditions for β + iα ∈ H, where σαH,B0+βH .

Remark 1.3. There is also a more general definition of a plane, but if we choose
the picard number to be 1. This is the most general plane one could look at.

Remark 1.4. By abuse, we will drop the H,B0 from the notation and simply
refer to it as σα,β .

2 Walls
Next we can move on towards the definition of a wall. L.

Definition 2.1. Let w ∈ Knum(X)\⟨v⟩. We say w is critical for v if each of
the following conditions hold:

(a) There exists σ ∈ Stab(X) and objects a, b ∈ Aσ with an injection b → a

(b) v(a) = a and v(b) = w
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(c) µZ(a) = µZ(b)

We call the critical subset W v
w ⊂ Stab(X) a wall. We can drop the first two

conditions and we call the "critical" set PW v
w ⊂ Stab(X) a pseudo-wall.

Remark 2.1. It is easier to study pseudo-walls and the walls will be a subset
of them, so most theorems will also hold for the walls.

We want to prove 6.22 in Macris notes.

3 Wall Structure
We start by first proving, that all Walls are semicircles. We fix a class v ∈
Knum(X) such that it has positive discriminant, i.e.

c1(v)
2 ≥ 2r(v) ch2(v) (10)

Proposition 3.1. The walls for stability conditions are given by semicircles
centered on the t-axis.

Proof. We fix ω ∈ NS(X), γ ∈ NSQ(X) such that ⟨γ, ω⟩ = 0, and v = (x, θ, z).
We write

NSQ(X) = ⟨ω⟩ ⊕ ⟨γ⟩ ⊕ ⟨γ, ω⟩⊥. (11)

Decompose θ = y1ω+y2γ+α, where α ∈ ⟨B0, H⟩⊥. Consider the slope stability
function

µZ(v) = −ReZω,B(v)

ImZω,B(v)

=
z − θ · β + x

2 (B
2 − ω2)

(θ − r ·B)ω

(12)

Then for Z = Ztω,sω+uγ

µZ(v) =
z − sy1ω

2 − uy2γ
2 + x

2 (s
2ω2 + u2γ2 − t2ω2)

(y1ω − y2γ + α− x(sω − uγ))tω
(13)

alpha and γ are orthogonal to ω, so we get some cancellation in the denominator

µZ(v) =
z − sy1ω

2 − uy2γ
2 + x

2 (s
2ω2 + u2γ2 − t2ω2)

(y1 − xs)tω2
(14)

In the same manner we compute for w = (r, c1ω + c2γ + α′, χ)

µZ(w) =
χ− (c1sω

2 + c2uγ
2) + r

2 (s
2ω2 + u2γ2 − t2ω2)

(c1 − rs)tω2
(15)
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Next we compute the difference µZ(w)− µZ(v)

−(c1 − rs)(z − sy1ω
2 − uy2γ

2) + x
2 (s

2ω2 − uγ2 − t2ω2)

(y1 − xs)(c1 − rs)tω2
(16)

+
+(y1 − xs)(χ− sc1ω

2 − uc2γ
2) + r

2 (s
2ω2 + u2γ2 − t2ω2)

(y1 − xs)(c1 − rs)tω2
(17)

if you multiply it by 2 collect the s2 terms the t2 terms the 2s terms and the
constant terms you get

s2ω2(xc1 − y1r) + t2ω2(xc1 − y1r)− 2s(χx− uc2γ
2x+ y2γ

2x)−D′ (18)

To make it look like a circle we can now divide by ω2(xc1 − y1r)

0 = 2
µZ(w)− µZ(v)

ω2(xc1 − y1r)
= (s2 + t2 − 2sC −D) (19)

= (s2 + t2 − 2sC + C2 − C2 −D) (20)

= ((s− C)2 + t2 − C2 −D), (21)
(22)

where

C =
xχ− rz − uγ2(xc2 − ry2)

g(xc1 − ry1)
(23)

D =
2zc1 + 2c2uγ

2y1 + xu2γ2c1 − 2y2uγ
2c1 − 2χy1 − ru2γ2y1

ω2(xc1 − ry1)
(24)

The circle is given in the (s, t)-plane by

(s− C)2 + t2 = C2 +D (25)

Remark 3.1. This is for pseudo walls, which now also implies the theorem for
walls.

With the notation above, we will state but not prove

Lemma 3.1. If x ̸= 0, then

D =
−uγ2(2y2 − ux) + 2z

ω2x
− 2y1

x
C (26)

You can also see, it will be independent of the radius if x = 0

Lemma 3.2. If x = 0 and y1 > 0, then

C =
z − γ2uy2

ω2y1
(27)
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Proof. C reduces to

C =
0 · χ− rz − uγ2(0 · c2 − ry2)

ω2(0 · c1 − ry1)
(28)

=
z − uγ2y2

ω2y1
(29)

Remark 3.2. If x > 0, the radius is

R =
√
C2 +D =

√
(C − y1

x
)2 − F (30)

F = − γ2

ω2
(u− y2

x
)2 +

1

x2ω2
(y21ω

2 + y22γ
2 − 2xz) (31)

Theorem 3.1. Suppose v has positive discriminant. The walls are nested

Proof. If x = 0, it follows immediately since the radii are independent of w. We
consider the function

d

dC
(C ±R(C)) = (1±

d
dC ((C − y1/x)

2 − F )

2
√
R

) (32)

= 1± 2(C − y1/x)

2
√

(C − y1/x)2 − F
(33)

= 1± (C − y1/x)

R
(34)

By the Hodge index theorem, we have F ≥ 0 for all u, therefore

R =
√
(C − y1/x)2 − F ≤ |C − y1/x| (35)

Now we have to do some case distinction. Let C − y1/x > 0

d

dC
(C +R(C)) ≥ 1 + 1 > 0 (36)

d

dC
(C −R(C)) ≤ 1− 1 = 0 (37)

So in this case, we get that for increasing C the interval [C − R,C + R] keeps
getting larger, so they have to be nested.
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