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This is a calculation I had to do from a second course in quantum field theory PHYC90057. It beautifully
demonstrates a lot of the machinery used in perturbative quantum field theory1 and as far I know is nowhere on
the internet. The exposition is verbose throughout, with the hope that other graduate students find it helpful.

1 Introduction
Consider the bare lagrangian describing a two-component massless spinor ψ and two complex scalar fields ϕ
and S

L = (∂µϕ)†∂µϕ+ ψ†iσµ∂µψ + S∗S + [λ1Sϕ
2 + iλ2ψ

Tσ2ψϕ+ h.c.] −m2|ϕ|2,

where (σ)µ := (I,−σi) and the couplings λ1, λ2 are taken to be real. Treating S and S∗ as independent fields,
the Euler–Lagrange equations ∂L/∂S = 0 and ∂L/∂S∗ = 0 give the equations of motion

0 = ∂L
∂S∗ = S + λ1(ϕ∗)2 and 0 = ∂L

∂S
= S∗ + λ1ϕ

2.

Solving the equations for S and S∗, we find the on-shell solutions are given by S = −λ1(ϕ∗)2 and S∗ = −λ1ϕ
2.

The complex scalar fields S and S∗ can then be integrated out of L by substituting our on-shell expressions
back into the Lagrangian

L = |∂ϕ|2 + ψ†(iσ · ∂)ψ + iλ2ψ
Tσ2ψϕ− iλ2ψ

†σ2ψ∗ϕ∗ −m2|ϕ|2 − λ2
1|ϕ|4.

The above is an effective Lagrangian in the fields ϕ and ψ with now an additional quartic self-interaction term
for ϕ. From L we can determine the interaction vertices for our theory:

ψT

ϕ∗ = −2λ2σ
2,

ψ

ψT

ϕ∗ = 2λ2σ
2

ψ

ϕ∗

ϕ

ϕ∗

ϕ

= −4iλ2
1,

where we have taken into account the symmetry factor of the quartic self-interaction coming from the
connected four point scalar function. Observe at first order there are 4 possible contractions of |i⟩ and ⟨f |

⟨p, p̃|Tϕϕ∗ϕϕ∗|k, k̃⟩ = ⟨p, p̃|ϕϕ∗ϕϕ∗|k, k̃⟩ + ⟨p, p̃|ϕϕ∗ϕϕ∗|k, k̃⟩ + ⟨p, p̃|ϕϕ∗ϕϕ∗|k, k̃⟩ + ⟨p, p̃|ϕϕ∗ϕϕ∗|k, k̃⟩.
1whilst also suppressing superficial complexities like spinor indices. The indices can be done away with as long as the orientations

of the Feynman diagrams given are adhered to. This is why our complex scalar field has a directed propagator.

https://handbook.unimelb.edu.au/subjects/phyc90057
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2 The One-Loop Correction of the Two-Point Function for ϕ

We begin by introducing the momentum-space representation for the fermion propagator, given by

= ikµσ
µ

k2k and = ikµσ
µ

k2 .
k

Before computing corrections to the propagator at one loop, we recount some basic theory. Recall that
a 1-particle irreducible (1PI) diagram is by definition any diagram that cannot be split in two by removing
a single line. Diagrammatically, the circle with 1PI in the centre represents the sum over all 1-PI two-point
diagrams. Algebraically we denote it by the expression −iΠϕ(p2) called the 1PI amplitude of ϕ where Π(p2) is
the self energy of the scalar field ϕ. The 2-point Greens function in momentum space denoted DF (p) is given
by summing over all connected two point diagrams. However observe that a connected two point Feynman
diagram can be decomposed recursively into a bare propagator plus a bare propagator concatenated with a 1PI
diagram connected to an arbitrary connected two point diagram. This recursion is stated algebraically as

DF (p) = D0(p) +D0(p)[−iΠ(p2)]DF (p),

where D0(p) is the bare propagator. By repeated substitution the recursion has the form of a geometric series
which can then be resummed as

DF (p) = i

p2 − (m2 + Πr(p2)) + iε
,

where Πr(p2) denotes the renormalized self-energy of the scalar field ϕ.2The recursion above also implies that
DF (p) can be expressed as the following sum of diagrams:

= + 1PI + 1PI 1PI + · · ·

Using our interaction vertices from the previous page we can deduce the form of the diagrams that appear in
the expansion of the 1PI amplitude of ϕ to order O(λ2

1, λ
2
2), they are

1PI =

k

+

p

p− k

k

+ · · ·

p

Now applying the standard Feynman rules to the above diagrams respectively gives

−iΠϕ = −4iλ2
1

∫
d4k

(2π)4
i

k2 −m2 = 4λ2
1

∫
d4k

(2π)4
1

k2 −m2 ,

−iΠψ(p2) = 1
2(−2λ2)(2λ2)

∫
d4k

(2π)4 Tr
(
σ2i(p− k) · σT

(p− k)2 σ2 i(k · σ
k2

)
= 2λ2

2

∫
d4k

(2π)4
(p− k)µkν
(p− k)2k2 Tr

(
σ2(σT )µσ2σν

)
.

Since (σT )µ = (I,−σi) it follows that the identity σ2(σT )µσ2 = σµ holds. Then combining this with the
standard QFT trace identity of the product of two Pauli matrices yields

Tr(σ2(σT )µσ2σν) = Tr(σµσν) = 2gµν .
2It is worth pointing out that the pole in the denominator (when compared with the pole in the formula of DF (p) given by the

Källen-Lehmann spectral representation) relates physical mass squared of ϕ to the bare mass by m2
phys = m2 + Πr(m2).
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The above identity can be applied and the Minkowski product (k − p) · k := (k − p)µkνgµν can be expanded to
simplify expression

−iΠψ(p2) = −4λ2
2

∫
d4k

(2π)4
(k − p) · k
(p− k)2k2 .

Adding the contribution of each diagrams gives the 1PI amplitude of ϕ with −iΠ(p2) = −iΠϕ − iΠψ(p2) to be

−iΠ(p2) = 4λ2
1

∫
d4k

(2π)4
1

k2 −m2 − 4λ2
2

∫
d4k

(2π)4
(k − p) · k
(p− k)2k2 .

Note from the above equation it can be seen that as the loop 4-momentum k goes to the UV there is a quadratic
divergence

−iΠ(p2) −→ 4(λ2
1 − λ2

2)
∫

d4k

(2π)4
1
k2 ,

unless the couplings are equal in which case there is a UV fixed point. To calculate the one loop correction we
make use the following three standard techniques in sequence; Feynman parameters, Wick rotation and
dimensional regularization. To begin, we introduce the technique of Feynman parameters which involves
exploiting integral identities of the form (or similar to)

1
A1A2

=
∫ 1

0
dx

1
(A1 + (A2 −A1)x)2 .

The product of factors in the denominator can then be combined in a way where they form a single quadratic
expression raised to the second power. Then after completing the square and changing variables the integral over
the momentum variable can now be done however there will also be auxiliary variables that can be integrated
out. Therefore for the current integral at hand we apply the integral identity above to −iΠψ(p2) and complete
the square to obtain

1
k2(p− k)2 =

∫ 1

0
dx

1
(k2 + ((p− k)2 − k2)x)2

=
∫ 1

0
dx

1
(k2 + p2x− 2pkx)2

=
∫ 1

0
dx

1
((k − px)2 − p2x(x− 1))2 .

Define ∆ := p2x(x− 1) and ℓ := k − px then d4ℓ = d4k, the numerator simplifies as

(k − p) · k = (ℓ+ p(x− 1)) · (ℓ+ px)
= ℓ2 + ∆ +O(ℓ).

Noting that odd integrals vanish our full expression simplifies to

−iΠψ(p2) = −4λ2
2

∫
d4k

(2π)4

∫ 1

0
dx

(k − p) · k
((k − px)2 − p2x(x− 1))2

= −4λ2
2

∫ 1

0
dx

∫
d4ℓ

(2π)4

[
ℓ2

(ℓ2 − ∆)2 + ∆
(ℓ2 − ∆)2

]
,

where we are left with a quadratic divergence and logarithmic divergence respectively. Currently the loop
integrals above are written with contractions using a Lorentz signature. However if they were in Euclidean
space we could do them in spherical polar coordinates in a relatively straight-forward way. To progress further
we introduce our second technique, Wick rotation. A Wick rotation will transform the Lorentz invariance into
rotational invariance. To perform a Wick rotation we define Euclidean 4-momentum variables ℓ0

E := −iℓ0 and
ℓiE = ℓi this implies ℓ2 = −ℓ2

E and d4ℓ = id4ℓE . Here we have analytically continued one of the variables into



Adam Monteleone The One-Loop Correction of the Two-Point Function for ϕ

the complex plane. Wick rotating, our expression becomes

−iΠψ(p2) = −4iλ2
2

∫ 1

0
dx

∫
d4ℓE
(2π)4

[
−ℓ2

E

(ℓ2
E + ∆)2 + ∆

(ℓ2
E + ∆)2

]
.

Unfortunately, this integral is still divergent in the UV regime. One possible way to get around this divergence
would be to introduce a cut-off, and that way we could still obtain some approximate answer. Unfortunately,
it turns out whatever answer we would obtain would violate the Ward identity and introduce a mass that is
proportional to the cut-off. Therefore in order to study the behaviour of this loop integral in a way which
respects the Ward identity we use a different technique known as dimensional regularisation. The idea of
dimensional regularisation is to replace dimension 4 with dimension d, and interpret d = 4 as a divergence.
Then we can use perturbation theory to extract the leading order contributions for the divergent integral at
d = 4 by working in dimension d = 4 − ε.

Consider the same loop integral as above but now in d-dimensions (where d ̸= 4). The d-dimensional closed
form of loop integrals of this type are a standard results in QFT and hence we use them without giving a
derivation. The first loop integral is solved using the identity

∫
ddℓE
(2π)d

ℓ2
E

(ℓ2
E + ∆)n = 1

(4π) d
2

d

2
Γ(n− d

2 − 1)
Γ(n)

(
1
∆

)n− d
2 −1

,

and for the second loop integral we use the identity

∫
ddℓE
(2π)d

1
(ℓ2
E + ∆)2 = 1

(4π) d
2

Γ(2 − d
2 )

Γ(2)

(
1
∆

)2− d
2

.

There is a subtlety when working in an arbitrary integer dimension, namely our couplings are no longer
dimensionless. Doing some elementary dimensional analysis on our Lagrangian we find that our couplings
rescale according to λ2 7→ µ

4−d
2 λ2 where µ is an arbitrary parameter we introduce of mass dimension one.

Therefore for d ̸= 4 our 1PI amplitude has the form

−iΠψ(p2) = −4iλ2
2µ

4−d
∫ 1

0
dx

[
−1

(4π)d
d

2
Γ(1 − d

2 )
∆1− d

2
+ 1

(4π) d
2

Γ(2 − d
2 )

∆2− d
2

]
.

Substituting d = 4 − ε, and applying elementary complex analysis we obtain the expansion for each term:

• Γ(1 − d
2 ) = Γ(−1 + ε

2 ) ≈ − 2
ε + γE − 1;

• Γ(2 − d
2 ) = Γ( ε2 ) ≈ 2

ε − γE ;

• µ4−d = µε = (µ2) ε
2 ≈ 1 + ε

2 log(µ2);

• (4π)− d
2 = (4π)−2+ ϵ

2 ≈ 1
(4π)2

(
1 + ε

2 log(4π)
)
;

• ∆ d
2 −1 = ∆1− ϵ

2 ≈ ∆(1 − ϵ
2 log(∆));

• ∆ d
2 −2 = ∆− ε

2 ≈ 1 − ε
2 log(∆).

Define the constant µ̃2 := 4πe−γEµ2, expanding both expressions up to order O(ε) yields

1
(4π) d

2

Γ(1 − d
2 )

∆1− d
2

= ∆
16π2

(
−2
ε

+ γE + −1
)(

1 − ε

2 log(∆)
)(

1 + ε

2 log(µ2)
)(

1 + ε

2 log(4π)
)

= ∆
16π2

[
−2
ε

+ γE − 1 + log(∆) − log(µ2) − log(4π)
]

= − ∆
16π2

[
2
ε

+ log
(
µ̃2

∆

)
+ 1
]
,
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and

1
(4π) d

2

Γ(2 − d
2 )

∆2− d
2

= 1
16π2

(
1 − ε

2 log(∆)
)(2

ε
− γE

)(
1 + ε

2 log(4π)
)(

1 + ε

2 log(µ2)
)

= 1
16π2

(
2
ε

− γE − log(∆)
)(

1 + ε

2 log(4π) + ε

2 log(µ2)
)

= 1
16π2

(
2
ε

+ log(4π) + log(µ2) − γE − log(∆)
)

= ∆
16π2

(
2
ε

+ log
(
µ̃2

∆

))
.

Combining everything together up to order ε yields our 1-loop contribution from the second Feynamn diagram:

−iΠψ(p2) = −4iλ2
2

∫ 1

0
dx

[
− ∆

16π2

(
−2 + ε

2

)(2
ε

+ log( µ̃
2

∆ ) + 1
)

+ ∆
16π2

(
2
ε

+ log
(
µ̃2

∆

))]
= −3iλ2

2
4π2

∫ 1

0
dx∆

[
2
ε

+ log
(
µ̃2

∆

)
+ 1

3 +O(ε)
]
.

Recall that we also had to evaluate the loop integral associated to correction from the first Feynman diagram

−iΠ2
ϕ = 4λ2

1

∫
d4k

(2π)4
1

k2 −m2 .

Performing a Wick rotation, we set k0
E := −ik0 and k2 = −k2

E which yields

−iΠ2
ϕ = −4iλ2

1

∫
d4kE
(2π)4

1
k2
E +m2 .

Dimensional regularizing, and making use of d-dimensional loop integral identity, gives

∫
ddk

(2π)d
1

(k2
E +m2) = 1

(4π) d
2

(
Γ(1 − d

2 )
(m2)1− d

2

)
.

Using the expansion derived before we expand each term out to first order

−iΠϕ = −4iλ2
1µ

4−d

(4π) d
2

(
Γ(1 − d

2 )
(m2)1− d

2

)

= −4iλ2
1

(
m2(1 − ε

2 log(m2))
)(

−2
ε

+ γE + 1
)

1
(4π)2

(
1 + ε

2 log(4π)
)(

1 + ε

2 log(µ2)
)

= − iλ2
1m

2

4π2

(
1 − ε

2 log(m2)
)(

−2
ε

+ γE − 1
)(

1 + ε

2 log(4π)
)(

1 + ε

2 log(µ2)
)

= − iλ2
1m

2

4π2

[
−2
ε

+ log(m2) + γE − 1 − log(4π) − log(µ2)
]

= iλ2
1m

2

4π2

[
2
ε

+ log
(
µ̃2

m2

)
+ 1
]
.

Putting everything together we find that the one-loop correction to the two point function for ϕ is given by

iΠ(p2) = iλ2
1m

2

4π2

[
2
ε

+ log
(
µ̃2

m2

)
+ 1
]

− 3iλ2
2

4π2

∫ 1

0
dx∆

[
2
ε

+ log
(
µ̃2

∆

)
+ 1

3

]
+O(ε).
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3 A Renormalized Perturbation Theory for L in the MS Scheme
In this section we give a full account of how to construct a renormalized perturbation theory for L in the
modified minimal subtraction scheme MS. Recall that in the MS scheme the finite parts of the counterterms
are chosen to be zero and in the MS scheme the universal constants the appear in the regularization (which are
log(4π) + γE) are subtracted off3.

From now we denote the bare fields and masses by ψ0, ϕ0 and m0 respectively. Recall the bare Lagrangian
after integrating out S was given by

L0 = |∂ϕ0|2 + ψ†
0(iσ · ∂)ψ0 + iλ2ψ

T
0 σ

2ψ0ϕ0 − iλ2ψ
†
0σ

2ψ∗
0ϕ

∗
0 −m2

0|ϕ0|2 − λ2
1|ϕ0|4.

We denote the renormalized fields and bare masses by ψ, ϕ and m respectively. We introduce the following
wavefunction renormalizations

ψ0 := Z
1
2
ψψ and ϕ0 := Z

1
2
ϕ ϕ.

Our renormalized the infinities appearing in our bare theory we will introduce a renormalized Lagrangian
L = L0 − Lct where Lct is the counterterm lagrangian which will be carefully deduced and which will cancel
with the divergences. Substituting the definition of the bare quantities into our bare Lagrangian L0 = L + Lc.t.

we have

L0 = |∂ϕ0|2 + ψ†
0(iσ · ∂)ψ0 + iλ2,0ψ

T
0 σ

2ψ0ϕ0 − iλ2,0ψ
†
0σ

2ψ∗
0ϕ

∗
0 −m2

0|ϕ0|2 − λ2
1,0|ϕ0|4

= Zϕ|∂ϕ|2 + Zψψ
†(iσ · ∂)ψ + [iλ2,0Z

1
2
ϕ Zψψ

Tσ2ψϕ+ h.c.] −m2
0Zϕ|ϕ0|2 − λ2

1,0Z
2
ϕ|ϕ0|4.

To deduce the additional counterterms, first observe that L0 = L + Lc.t., this decomposition therefore suggests
the relations

Zϕ = 1 + δϕ, Zψ = 1 + δψ,

λ2
1,0Z

2
ϕ = λ2

1 + δ1, λ2,0Z
1
2
ϕ Zψ = λ2 + δ and m2

0Zϕ = m2 + δm.

Since Lc.t. = L0 − L we can rearrange to deduce the respective definitions of the counterterms:

δϕ := Zϕ − 1, δψ := Zψ − 1,

δ1 := λ2
1 − λ2

1,0Z
2
ϕ = λ2

1 − λ2
1,0Z1, δ2 := λ2,0Z

1
2
ϕ Zψ − λ2δ = λ2,0Z2 − λ2 and δm := m2

0Zϕ −m2,

with Z1 := Z2
ϕ and Z2 := Z

1
2
ϕ Zψ. The above relations can then be substituted into the bare Lagrangian which

gives

L0 = (1 + δϕ)|∂ϕ|2 + (1 + δψ)ψ†(iσ · ∂)ψ + [i(λ2 + δ2)ψ†σ2ψϕ+ h.c.] − (m2 + δm)|ϕ|2 − (λ2
1 + δ1)|ϕ|4

= L + δϕ|∂ϕ|2 + δψψ
†(iσ · ∂)ψ + [iδ2ψ

†σ2ψϕ+ h.c.] − δm|ϕ|2 − δ1|ϕ|4.

Therefore the counterterm Lagrangian is given by

Lc.t. = δϕ|∂ϕ|2 + δψψ
†(iσ · ∂)ψ + [iδ2ψ

†σ2ψϕ+ h.c.] − δm|ϕ|2 − δ1|ϕ|4.

From the counterterm Lagrangian the Feynman diagram and rules for the counterterm insertions can be read
off as

3The advantage of using the MS scheme is that it is makes it easier to deduce the counterterms, additionally the 1-loop expressions
also have a simpler form. The disadvantage is that it is not strictly true that the renormalized mass is the physical mass. An
on-shell subtraction scheme can be used alternatively, however this scheme has the opposite advantages and disadvantages of the
former.
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= i(p2δϕ − δm),

p

and = iδψσ · p.

p

ψT

ϕ∗ = −2δ2σ
2,

ψ

ψT

ϕ∗ = 2δ2σ
2

ψ

ϕ∗

ϕ

ϕ∗

ϕ

= −4iδ1

We now need to compute the radiative corrections to each of the amputated vertices adding the
counterterm insertion.

Firstly the three-point function δ2 = 0, as it’s clear that neither ψψT 7→ ϕ∗ nor ϕ∗ 7→ ψψT have radiative
corrections at one-loop. This is because loop cannot be formed in such a way with the diagrams that keeps the
orientations of the edges consistent.

Next we derive counterterms for the scalar 2-point function. In the previous section we computed the bosonic
self energy however now we must now also take into account the Feynman diagram associated to the δϕ and δm
counterterm insertions. Using our previous result and expanding

−iΠ(p2) = −iΠϕ − iΠψ(p2) + i(p2δϕ − δm)

= iλ2
1m

2

4π2

[
2
ε

+ log
(
µ̃2

m2

)
+ 1
]

− 3iλ2
2

4π2

∫ 1

0
dx∆

[
2
ε

+ log
(
µ̃2

∆

)
+ 1

3

]
+ i(p2δϕ − δm),

since our counterterms should cancel these loop corrections, we set the respective counterterms equal to

−iδm = iΠϕ and − iδϕ = i lim
p2−→0

∂Πψ

∂p2 .

Therefore
δm = Πϕ = λ2

1m
2

4π2

[
2
ε

+ log
(
µ̃2

m2

)
+ 1
]
,

now applying the MS scheme, the counterterm δm is redefined using the above equation but with finite parts
dropped and with universal constants included

δm := λ2
1m

2

2π2ε
+ log(4πe−γE ).
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1PI =

k

+
p

p− k

k

+
p

p

Similarly we compute

δϕ = lim
p2−→0

∂

∂p2

(
−3λ2

2i

4π2

∫ 1

0
dx ∆

[
2
ε

+ log(µ̃2) + 1
3 − log(∆)

])
= −3λ2

2i

4π2

∫ 1

0
dx x(x− 1)

[
2
ε

+ log(µ̃2) − 1 − lim
p2−→0

∂

∂p2

(
p2 log(p2x(x− 1))

)]
= −3λ2

2i

4π2

∫ 1

0
dx x(x− 1)

[
2
ε

+ log(µ̃2) − 2
3 − lim

p2−→0
log(∆)

]
.

As p2 −→ 0, the term log(∆) −→ −∞ and so there is an IR divergence. To regulate this divergence we now
introduce a fictitious fermion mass term Mψ such that M2

ψ << µ2. The ∆ above can then be replaced with the
IR regulated ∆ given by

∆ := ∆IR = p2x(x− 1) +M2
ψ.

Now we can take p2 −→ 0 to obtain a finite expression that isolates the ultraviolet pole and keeps the IR regulator

δreg
ϕ = −3λ2

2
4π2

∫ 1

0
dx x(x− 1)

[
2
ε

+ log(µ̃2) − 2
3 − log(M2

ψ)
]

= λ2
2

8π2

[
2
ε

+ log(µ̃2) − 2
3 − log(M2

ψ)
]
, as

∫ 1

0
x(x− 1)dx = 1

6 .

Applying the MS scheme the corresponding counterterm δϕ above is redefined dropping the finite part and
adding in the universal constants

δϕ := λ2
2

4π2ε
+ log(4πe−γE ).

Next to determine is the δψ counterterm. The fermion self energy at 1-loop is given by which mathematically

1PI =
p

k − p

k

+
p

+ · · ·

p

corresponds to −iΣ(p) = −iΣ1(p) + iδψσ · p. In order to determine δψ, we must compute the contribution to
the 1-loop amplitude given by −iΣ1(p). Using the Feynman rules and noting that the sign coming from the
fermion interchange in ψ†σ2ψ∗ψTσ2ψ, yields

−iΣ1(p) = 4λ2
2

∫
d4k

(2π)4
(i)2kµσ

2σµσ2

k2[(k − p)2 −m2]

= −4λ2
2

∫
d4k

(2π)4
kµσ

µ

k2[(k − p)2 −m2] since σ2σµσ2 = σµ.
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Using Feynman parameters where A = k2 and B = (k − p)2 −m2 we obtain

A+ (B −A)x = k2 + ((k − p)2 − k2 −m2)x
= k2 + xp2 − 2xkp−m2x

= (k − xp)2 − x2p2 + xp2 −m2x.

Let ∆ := x2p(1 − x) +m2x, and let ℓ = k − xp then d4ℓ = d4k, substituting this into our expression gives

−iΣ1(p) = −4λ2
2

∫ 1

0
dx

∫
d4ℓ

(2π)4
(ℓ+ xp)µσµ
(ℓ2 − ∆)2 = −4λ2

2(σ · p)
∫ 1

0
dx

∫
d4ℓ

(2π)4
x

(ℓ2 − ∆)2 ,

where the integral with ℓ to the odd power is odd and hence vanishes. Performing a Wick rotation: set
ℓ0
E := −iℓ0 and set ℓiE := ℓi then d4ℓ = id4ℓE and ℓ2

E = −ℓ2, so

−iΣ1(p) = −4iλ2
2(σ · p)

∫ 1

0
dx x

∫
d4ℓE
(2π)4

1
(ℓ2
E + ∆)2 .

Applying dimensional regularization, where d = 4 − ε and using the standard identities, expanding to order ε
gives

−iΣ1(p) = −iλ2
2(σ · p)
4π2

∫ 1

0
dx x

[
2
ε

+ log
(
µ̃

∆

)
+O(ε)

]
= −iλ2

2(σ · p)
8π2

[
2
ε

+ log
(
µ̃

∆

)
+O(ε)

]
,

hence our counterterm for ψ should be equal to

δψ = λ2
2

8π2

[
2
ε

+ log
(
µ̃

∆

)
+O(ε)

]
.

Again, applying the MS scheme the corresponding counterterm δψ above is redefined dropping the finite part
and adding in the universal constants

δψ := λ2
2

4π2ε
+ log(4πe−γE ).

Next we compute the δ1 counterterm by considering a 1-loop correction to the 4-point scalar interaction. Setting
the external momenta to zero, we have at 1-loop that:

1PI

Γ(4)
1-loop

=

k

−k

Λs

+ k −k

Λt

+ k −k

Λu

+ −k

k, T

−k

k, T

Λψ

+

4i δ1

+ · · ·

iΓ(4)
1-loop = iΛs + iΛt + iΛu + iΛψ + 4iδ1.

Computing the iΛψ contribution using Feynman rules (and taking into account the sign from fermion
interchange) yields

iΛψ = (−1)(−2λ2)2(2λ2)2
∫

d4k

(2π)4 i
4 Tr

(
σ2[σµ]Tσ2σνσ2[σρ]Tσλ

)kµ(−kν) kρ(−kλ)
k8

= −16λ2
2

∫
d4k

(2π)4 Tr
(
σ2[σµ]Tσ2σνσ2[σρ]Tσλ

)kµkνkρkλ
k8 .
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The expression using the trace simplifies using the fact that σ2[σµ]Tσ2 = σµ together with an identity for
the trace

Tr
(
σ2[σµ]Tσ2σνσ2[σρ]Tσλ

)
= Tr

(
σµσνσρσλ

)
= 2
[
gµνgλρ + gµρgνλ − gµλgνρ − i ϵµνλρ

]
.

Using the fact that kµgµνkν = k ·k = k2, the exoression for iΛψ simplifies

iΛψ = −32λ2
2

∫
d4k

(2π)4

(
gµνgλρ + gµρgνλ − gµλgνρ − i ϵµνλρ

)kµkνkρkλ
k8

= −32λ2
2

∫
d4k

(2π)4
1
k4 ,

Next we introduce a mass regulator M , such that M2 << µ2 to regulate the IR divergence

iΛψ = −32λ2
2

∫
d4k

(2π)4
1

(k2 −M2)2 = −32λ2
2i

∫
d4kE
(2π)4

1
(k2
E +M2)2 ,

where we Wick rotated, setting k0
E := −ik0, kiE := ki so id4kE = d4k and k2 = −k2

E . From this together with
our standard d-dimensional integral identities we can dimensionally regularise this loop integral as follows. Set
d = 4 − ε, expanding up to first order then yields

iΛψ = −32iλ4
2(µ2)4−d

∫
ddkE
(2π)d

1
(k2 +M2)2 = −2iλ4

2
π2

[
2
ε

+ log
(
µ̃2

M2

)
+O(ε)

]
.

Similarly, to compute the iΛs we apply the Feynman rules to the s-channel diagram to get our loop expression.
Performing the calculation just as we did above and expanding to first order we obtain

iΛs = (−4iλ1)2
∫

d4k

(2π)4
(i2)

(k2 −m2)2

= iλ4
1

π2

[
2
ε

+ log
(
µ̃2

m2

)
+O(ε)

]
.

Again, applying the Feynman rules to the t and u-channel diagrams, gives expressions of the form

iΛt = iΛs and iΛu = 1
2 iΛs.

Putting everything together, the 1-loop amplitude for the 4-point function is found to be

iΓ(4)
1-loop = iΛs + iΛt + iΛu + iΛψ + 4iδ1

= 5
2 iΛs + iΛψ + 4iδ1.

Hence, our counterterm must be of the form

δ1 = −1
4

[
5
2Λs + Λψ

]
= −1

4

[
5λ4

1
2π2

(
2
ε

+ log
(
µ̃

m2

))
− 2λ4

2
π2

(
2
ε

+ log
(
µ̃2

M2

))]
Since we are in the MS scheme the counterterm is then redefined, dropping finite terms, and adding universal
constants. Therefore our final counterterm in the renormalized PT theory is given by

δ1 := − 1
4π2ε

(
5λ4

1 − 4λ4
2
)

+ log(4πe−γE ).



Adam Monteleone One-Loop β-Functions for L and RG Flow

4 One-Loop β-Functions for L and RG Flow
To compute the β functions for the parameters in our theory we use the Callman-Symanzik equation,

βλ = µ
∂

∂µ

(
−δλ + 1

2λ
∑
i

δZi

)
= −2B − λ

∑
i

Ai

where δλ = B 2
ε and δZi

= −Ai 2
ε . Recall the counterterms we deduced for L in the previous section:

δψ = λ2
2

4π2ε
+ log(4πe−γE ), δm = λ2

1m
2

2π2ε
+ log(4πe−γE ), δϕ = λ2

2
4π2ε

+ log(4πe−γE ),

δ1 = − 1
4π2ε

(
5λ4

1 − 4λ4
2
)

+ log(4πe−γE ) and δ2 = 0.

The beta function for λ2
1 is then found by using the formula above with B = −1

8π2 (5λ4
1 − 4λ4

2), where we sum
over four external legs in the self interaction vertex each contributing Aϕ = − λ2

2
8π2 that is

βλ2
1
(λ2

1, λ
2
2) = −2

(
−1
8π2 (5λ4

1 − 4λ4
2)
)

− λ2
1

4∑
i=1

λ2
2

8π2

= 1
4π2 (5λ4

1 − 4λ4
2) + 4λ2

1

(
λ2

2
8π2

)
= 1

4π2 (λ4
1 + 4λ2

1λ
2
2 − 4(λ2

1 − λ2
2)).

To compute the beta function for λ2 we again use the same formula however this time B = 0 as δ2 = 0,

βλ2(λ2
1, λ

2
2) = −2B − λ2

2

3∑
i=1

Ai = −λ2
2

[
2
(

− λ2
2

8π2

)
− λ2

2
8π2

]
= 3λ3

2
8π2 .

Having obtained βλ2 for the linear coupling, we now use the chain rule to translate it into the flow of its square

βλ2
2

= µ
∂

∂µ
(λ2

2(µ)) = 2λ2µ
∂

∂µ
(λ2(µ)) = 2λ2βλ2 = 3λ4

2
4π2 .

Next we analyse the renormalization group flow of the beta functions, in particular we consider whether the
condition λ2

1 = λ2
2 is stable under renormalization group flow. Let

∆(µ) := λ2
1(µ) − λ2

2(µ),

then if ∆ = 0 stays zero for all scales, the condition is said to be preserved. Let t = log(µ) the RG equation
gives

d∆
dt

= d

dt
(λ2

1 − λ2
2)

= βλ2
1
(λ2

1, λ
2
2) − βλ2

2
(λ2

1, λ
2
2)

= 1
4π2 (λ4

1 + 4λ2
1λ

2
2 + 4(λ2

1 − λ2
2)) − 3λ4

2
4π2

= 1
4π2 ((λ2

1 − λ2
2)(λ2

1 + 3λ2
2) + 4(λ2

1 − λ2
2)(λ2

1 + λ2
2))

= (5λ2
1 + 7λ2

2)
4π2 ∆.

Since 5λ2
1+7λ2

2
4π2 > 0, by the above d∆

dt = 0 if ∆ = 0 for all t, and hence all scales µ. Therefore the condition
λ1 = λ2 is preserved under renormalization group evolution. Moreover we see that |∆| deceases in the IR and
increases in the UV.
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