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This is a calculation I had to do from a second course in quantum field theory PHYC90057. It beautifully
demonstrates a lot of the machinery used in perturbative quantum field theory' and as far I know is nowhere on

the internet. The exposition is verbose throughout, with the hope that other graduate students find it helpful.

1 Introduction

Consider the bare lagrangian describing a two-component massless spinor 1 and two complex scalar fields ¢
and S
L= (0,0)70"¢ + lic" 0, + 5*S + \S¢* + idatyT 02 + huc.] — m2[o2,

where ()" := (I, —o") and the couplings A1, A2 are taken to be real. Treating S and S* as independent fields,
the Euler-Lagrange equations 0£/9S = 0 and dL/9S* = 0 give the equations of motion

_aﬁ_ *\ 2 _%_ * 2

Solving the equations for S and S*, we find the on-shell solutions are given by S = —\;(¢*)? and S* = —\;¢>.
The complex scalar fields S and S* can then be integrated out of £ by substituting our on-shell expressions

back into the Lagrangian
L =106 + ¢! (i7 - )i + idgy)" o*P¢ — idaypTa?y 9" —m?|gf* — Ao |*.

The above is an effective Lagrangian in the fields ¢ and v with now an additional quartic self-interaction term

for ¢. From £ we can determine the interaction vertices for our theory:

(G (8

= —2)\20'2, = 2)\20’2
- g R
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where we have taken into account the symmetry factor of the quartic self-interaction coming from the
connected four point scalar function. Observe at first order there are 4 possible contractions of |i) and (f]

N =l =] T ——— =] o
~ * * ~ * * ~ * * ~ * * ~ * *
(p. p|T¢¢" p¢" |k, k) = (p, p|pd" " |k, k) + (p, Plopd™ 997 |k, k) + (p, Dlo9" 09" |k, k) + (p, plod" o™ |k, k).
Lwhilst also suppressing superficial complexities like spinor indices. The indices can be done away with as long as the orientations
of the Feynman diagrams given are adhered to. This is why our complex scalar field has a directed propagator.
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2 The One-Loop Correction of the Two-Point Function for ¢

We begin by introducing the momentum-space representation for the fermion propagator, given by

> <
ik, ot _ ko
k — T k2 and k — T k2

—_— e

Before computing corrections to the propagator at one loop, we recount some basic theory. Recall that
a l-particle irreducible (1PI) diagram is by definition any diagram that cannot be split in two by removing
a single line. Diagrammatically, the circle with 1PI in the centre represents the sum over all 1-PI two-point
diagrams. Algebraically we denote it by the expression —ill,(p?) called the 1PI amplitude of ¢ where II(p?) is
the self energy of the scalar field ¢. The 2-point Greens function in momentum space denoted Dg(p) is given
by summing over all connected two point diagrams. However observe that a connected two point Feynman
diagram can be decomposed recursively into a bare propagator plus a bare propagator concatenated with a 1PI

diagram connected to an arbitrary connected two point diagram. This recursion is stated algebraically as

Dr(p) = Do(p) + Do(p)[—iIl(p*)] Dr(p),

where Dy (p) is the bare propagator. By repeated substitution the recursion has the form of a geometric series

which can then be resummed as )
i
P2 (M2 1L (p?)) + e

Dr(p)

where II,.(p?) denotes the renormalized self-energy of the scalar field ¢.2The recursion above also implies that

Dp(p) can be expressed as the following sum of diagrams:

Using our interaction vertices from the previous page we can deduce the form of the diagrams that appear in
the expansion of the 1PI amplitude of ¢ to order O(\}, \3), they are

k p—k
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Now applying the standard Feynman rules to the above diagrams respectively gives

d*k i d*k 1
iy = —4i)° | —— —— =4 2/77
e Z/\1/(27r)4 k2 —m?2 M (2m)t k2 — m?2’

. oy 1 d*k oc%ilp—k) -5 Li(k-T\ o [ d'k (p—Fk)uky 2T\ 2
—illy(p”) = 5(_2)\2)(2>\2)/ (2n)" Tl"( (p—k)? > ) _2)\2/WW Tr (0 (@ )"o?5") .

Since (G1)* = (I,—0o?) it follows that the identity o2(G")*0? = o* holds. Then combining this with the
standard QFT trace identity of the product of two Pauli matrices yields

Tr(o?(@ ) o?5”) = Tr(oto”) = 29"

21t is worth pointing out that the pole in the denominator (when compared with the pole in the formula of Dg(p) given by the

Kallen-Lehmann spectral representation) relates physical mass squared of ¢ to the bare mass by mihys =m? 4 I1,,(m?).
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The above identity can be applied and the Minkowski product (k —p) - k := (k — p) .k, ¢g"" can be expanded to

simplify expression " ( )
a*k (k—p)-k
. 2y 2
-l = <008 | G~

Adding the contribution of each diagrams gives the 1PI amplitude of ¢ with —ill(p?) = —ill, — il (p?) to be

) dk 1 Ak (k—p)-k
72]._.[(])2) = 4A% / 7(271_)4 7]{2 — m2 — 4)\% / 7(27()4 7(1) — k)2k2 .

Note from the above equation it can be seen that as the loop 4-momentum k goes to the UV there is a quadratic
divergence
d*k 1
2 2 2
~) 403 - 3) [ Sy

unless the couplings are equal in which case there is a UV fixed point. To calculate the one loop correction we
make use the following three standard techniques in sequence; Feynman parameters, Wick rotation and
dimensional regularization. To begin, we introduce the technique of Feynman parameters which involves

exploiting integral identities of the form (or similar to)

1 ! 1
= / dm .
AlAQ 0 (A1 + (A2 — Al)lli)Z

The product of factors in the denominator can then be combined in a way where they form a single quadratic
expression raised to the second power. Then after completing the square and changing variables the integral over
the momentum variable can now be done however there will also be auxiliary variables that can be integrated
out. Therefore for the current integral at hand we apply the integral identity above to —illy(p?) and complete

the square to obtain

1 L 1
B k) :/0 (N (P PR P

1
1
_/0 dx(k2+p2xf2pkx)2
1 1
:/ dx 5 5 5 -
o ((k—px)?—p?z(r—1))

Define A := p?x(x — 1) and £ := k — px then d*¢ = d*k, the numerator simplifies as

(k—p)-k=({l+plx—1)) ({+pz)
=0+ A+0().

Noting that odd integrals vanish our full expression simplifies to

. - 'k [ (k—p) -k
—illy(p?) = =43 / (277)4/0 = e = pPa(a — D)2
, [ d*e 2 A
= _4,\2/0 dx/ (2m)? {(KQ_A)Q + (Z=A)2]’

where we are left with a quadratic divergence and logarithmic divergence respectively. Currently the loop

integrals above are written with contractions using a Lorentz signature. However if they were in Euclidean
space we could do them in spherical polar coordinates in a relatively straight-forward way. To progress further
we introduce our second technique, Wick rotation. A Wick rotation will transform the Lorentz invariance into
rotational invariance. To perform a Wick rotation we define Euclidean 4-momentum variables ¢% := —if° and
(%, = (" this implies (2 = —(2% and d*¢ = id*{p. Here we have analytically continued one of the variables into
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the complex plane. Wick rotating, our expression becomes

d*e —EQ A
— 2 B
ZHw —4i)5 / / { 62 FWNE + (£2E+A)2

Unfortunately, this integral is still divergent in the UV regime. One possible way to get around this divergence

would be to introduce a cut-off, and that way we could still obtain some approximate answer. Unfortunately,
it turns out whatever answer we would obtain would violate the Ward identity and introduce a mass that is
proportional to the cut-off. Therefore in order to study the behaviour of this loop integral in a way which
respects the Ward identity we use a different technique known as dimensional regularisation. The idea of
dimensional regularisation is to replace dimension 4 with dimension d, and interpret d = 4 as a divergence.
Then we can use perturbation theory to extract the leading order contributions for the divergent integral at
d = 4 by working in dimension d =4 — €.

Consider the same loop integral as above but now in d-dimensions (where d # 4). The d-dimensional closed
form of loop integrals of this type are a standard results in QFT and hence we use them without giving a

derivation. The first loop integral is solved using the identity

/ddeE G 1 dT(n—-4-1 <1>"—3—1
i (G +A)r  ami2 T \A ’
and for the second loop integral we use the identity
/ a1 1 T2-49) (1)2—5
@n)? (F+A2 ~ unf I(2) \A '

There is a subtlety when working in an arbitrary integer dimension, namely our couplings are no longer

dimensionless. Doing some elementary dimensional analysis on our Lagrangian we find that our couplings
rescale according to Ay +— u% A2 where p is an arbitrary parameter we introduce of mass dimension one.
Therefore for d # 4 our 1PI amplitude has the form

. ! ~1 dI(1—-9) 1 T2-9
il () = —disu d/o e [(47r)d2 Al—%2 * (47)% A2—%2 '

Substituting d = 4 — ¢, and applying elementary complex analysis we obtain the expansion for each term:

e F1-9H=TI(-1+5)~ -2+ -1

e A$ 2= A5 a1 Slog(A).

Define the constant ji% := 4me~ 722, expanding both expressions up to order O(e) yields

U (i) (- 5ou) (o ) 1+ st
= % [—i + g — 1 +log(A) — log(u?) — 10g(47r)}

A 2 2
= 16n2 L—i—log (A) +1]’
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and

— oz (1= 5108 (2= 7) (1+ 5 ostam) (14 5 tou(u))

— g — log(A)) (1 + glog(élw) + glog(uz))

2+ log(1r) + log(u?) ~ 7z~ log(4))

A (2 2
= —+1 — .
1672 (5 +log <A>>
Combining everything together up to order ¢ yields our 1-loop contribution from the second Feynamn diagram:
1 ~2 =2
. ) A e\ (2 i A (2 i
—illy (p?) = —4i\3 d 77(72 7> —+log(=)+1 - +1 —
iy (") Z2/0 x{l&r? o) \e e+ )+ gz (2Tl R
3i\3 (1 2 2 1
=——= dzA |- +1 — - .
2 ), ol | < + log A + 3 +O(e)

Recall that we also had to evaluate the loop integral associated to correction from the first Feynman diagram

2
1672 \ e
(2

d*k 1
TT2 2
‘“%—‘Ml/wm'

Performing a Wick rotation, we set k% := —ik? and k* = —k% which yields

d*kp 1
I = _4')\2/77,
s M (2m)* k2, + m?

Dimensional regularizing, and making use of d-dimensional loop integral identity, gives

/ddk 11 (ra-9
@2m)? (k +m2) — (4m)% \(m2)'=% )

Using the expansion derived before we expand each term out to first order

i At (F(l - ‘5))
T umE ()
= —4i\? (m2(1 - %log(m2))) (—i +9E + 1) (471r)2 (1 + glog(élw)) (1 + glog(/f))
= —i)j:ﬂ (1 — glog(m2)) (—i +7E — 1) (1 + %log(élﬂ)) (1 + glog(/f))

iA2m? 2
=3 {—5 + log(m?) + vg — 1 — log(4r) — log(/f)}

iAtm? [2 02
= Zilog( =) +1].
4m? L o8 <m2 *

Putting everything together we find that the one-loop correction to the two point function for ¢ is given by

iAm? [2 ji? 3iA3 1 2 AN
i(p?) = v L + log <,u ) + 1} e dzA [s + log ('Z) + 3] + O(e).

472 m? 42 J,
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3 A Renormalized Perturbation Theory for £ in the MS Scheme

In this section we give a full account of how to construct a renormalized perturbation theory for £ in the
modified minimal subtraction scheme MS. Recall that in the MS scheme the finite parts of the counterterms
are chosen to be zero and in the MS scheme the universal constants the appear in the regularization (which are
log(4m) + vg) are subtracted off®.

From now we denote the bare fields and masses by 19, ¢g and mq respectively. Recall the bare Lagrangian

after integrating out S was given by
Lo = [0¢0|* + i (i7 - 0)tbg + idat 0o — idatbfo? v by — mi|dol* — AF|ol*.

We denote the renormalized fields and bare masses by 9, ¢ and m respectively. We introduce the following

wavefunction renormalizations
1 1
Yo 1= Zj}z/) and ¢g := de(é.

Our renormalized the infinities appearing in our bare theory we will introduce a renormalized Lagrangian
L = Lo — L where L is the counterterm lagrangian which will be carefully deduced and which will cancel
with the divergences. Substituting the definition of the bare quantities into our bare Lagrangian Lo = £+ L.
we have

Lo = [0¢o|* + 4 (i7 - 0)o + ida,0tf oo — ida,0tb o Wby — md|dol* — A2 gleol*
= Z4|0¢|> + Zy ' (i7 - O)p + [iM2,022 Zytp T 0% + huc.] — mf Zy|do|” — AT 0 Z3| ol *.

To deduce the additional counterterms, first observe that Lo = £ + L., this decomposition therefore suggests
the relations
Zp =1+ 0y, Zw:1+51/,,

1
MoZi =M 401, MoZiZy=X+6 and miZy=m?+ 0.
Since L.+, = Lo — L we can rearrange to deduce the respective definitions of the counterterms:
(54) 2:Z¢,717 5¢, 2:Z¢71,
2 2 52 2 2 3 2 2
51 = )\1 — /\1,0Z¢ = /\1 — )‘1,0Z17 52 = )\270Z(Z Z¢ — )\25 = )\27022 — )\2 and (Sm = mOZ¢ —m,

1
with Z; := Zi and Zy = Z ’ Zy. The above relations can then be substituted into the bare Lagrangian which

gives

Lo = (14084)|0¢ + (14 6,)0 (i7 - )¢ + [i(Na + d2)v 0% + hc.] — (M2 + 5,0)[0]* — (A2 + 61)|o|*
= L+ 64|00 + 6,01 (i7 - 0)¢ + [i6200T 0% + huc.] — 6,| B> — 610"

Therefore the counterterm Lagrangian is given by
Lo, = 05|00 + 8,91 (i7 - 0)¢ + [i62¢T 0?06 + hoc.] — 6|l — 610",

From the counterterm Lagrangian the Feynman diagram and rules for the counterterm insertions can be read
off as

3The advantage of using the MS scheme is that it is makes it easier to deduce the counterterms, additionally the 1-loop expressions
also have a simpler form. The disadvantage is that it is not strictly true that the renormalized mass is the physical mass. An
on-shell subtraction scheme can be used alternatively, however this scheme has the opposite advantages and disadvantages of the
former.
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= i(p26¢> - 5m)7 and = i(SwU - p.

————»———@————»———— +M

,,,4,,,,¢* ¢* € ---

T oT

We now need to compute the radiative corrections to each of the amputated vertices adding the

counterterm insertion.

Firstly the three-point function d; = 0, as it’s clear that neither Y7 +— ¢* nor ¢* +— T have radiative
corrections at one-loop. This is because loop cannot be formed in such a way with the diagrams that keeps the
orientations of the edges consistent.

Next we derive counterterms for the scalar 2-point function. In the previous section we computed the bosonic
self energy however now we must now also take into account the Feynman diagram associated to the d4 and d,,

counterterm insertions. Using our previous result and expanding
—ill(p?) = —illy — illy(p®) + i (p*6p — Om)

iXm? [2 2 3iN3 (1 2 2 1
= Stlog| = )41 - =22 daA | =4 log (B ) 4+ S| +i(p%0s — Om
472 [a+0g(m2>+ } 472 v [€+og<A>+3}+z(p ¢ ),

since our counterterms should cancel these loop corrections, we set the respective counterterms equal to

ot
by =My and = idy =i lim 8p§1'

AQ 2 2 ~2
O =Ty = 210 L—&-log(rl:LQ)—l-l],
T

Therefore

now applying the MS scheme, the counterterm &, is redefined using the above equation but with finite parts
dropped and with universal constants included

A2m? _
O 1= 5r2e + log(4me™ 7).
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k p—k
N A P,
e »>-- = \) + - S e IR S e
\\ / *} H
- — P - - p u p
k

Similarly we compute

. 0 73)\%2‘ 1 2 L 1
% = p£1£>10 ap? ( 4m2 /0 de & [6 +1og (A7) + 3 1og(A)})
—3X%i ! 9 L, . o ,
= /0 de x(xz — 1) - +log(p”) —1— plQlEO 87192 (p log(p?x(x — 1)))
*3)\%2 1 2 9 2 )
= /0 dr x(x —1) -t log(ii°) — 3 p£1§0 log(A)] .

As p? — 0, the term log(A) — —oo and so there is an IR divergence. To regulate this divergence we now
introduce a fictitious fermion mass term My, such that M7 << p®. The A above can then be replaced with the
IR regulated A given by

A=A =p’z(z — 1)+ Mi

Now we can take p? — 0 to obtain a finite expression that isolates the ultraviolet pole and keeps the IR regulator

—3X\2 [t 2 2
reg __ 2 -1 “ 1 ~2\ _ =2 —1 2
Oy o /O dr x(z — 1) L +log(i7) — 5 — log(My)

)\% 2 =2 2 2 ! 1
=82 L +log(i%) — 5 —log(My) |, as /0 (@ —1)do = ¢

Applying the MS scheme the corresponding counterterm d4 above is redefined dropping the finite part and

adding in the universal constants
2

A _
dp 1= 4#55 + log(4me™ 7).

Next to determine is the d,, counterterm. The fermion self energy at 1-loop is given by which mathematically

—
p N % p
k
corresponds to —iX(p) = —iX1(p) + idyo - p. In order to determine J,, we must compute the contribution to

the 1-loop amplitude given by —iX;(p). Using the Feynman rules and noting that the sign coming from the

fermion interchange in ¢ fo2¢*¢T o21), yields

) 5 d*k i)?kyo%ct o?
—i%1(p) = 4)‘2/ (2m)4 kz([()k —p)2 —m?|

d4]€ kot
2 : 2 2
4)\2/ (2 )4 k_Q[(k £ )2 m2] since o“cto* = ot
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2

Using Feynman parameters where A = k? and B = (k — p)? — m? we obtain

A+ (B-Azr =K+ ((k—p)? -k —m?)x
= k2 4+ xp? — 2zkp — m2x

= (k —ap)? — 2?p* + xp* — m*x.

Let A := 22p(1 — z) + m?x, and let £ = k — xp then d*¢ = d*k, substituting this into our expression gives

d4€ Z—l—:c o d4€ x
—i%i(p 4)\2/ / pk‘)z — —4\(o-p) / dm/ N

where the integral with ¢ to the odd power is odd and hence vanishes. Performing a Wick rotation: set
09, := —if° and set (i, := (' then d*¢ = id*/p and (%, = —(?

SO

)

1
—i¥1(p) = —4iN3(o - p / dxx/ & gE 62 AR

Applying dimensional regularization, where d = 4 — € and using the standard identities, expanding to order &

gives

—i¥y(p) = W/Oldxx [2 + log (A) +0(e )} = W E + log (Z) +0(6)] )

hence our counterterm for ¢ should be equal to

5y = SA; {2 +log (Z) +O(€)}

Again, applying the MS scheme the corresponding counterterm &, above is redefined dropping the finite part
and adding in the universal constants

A3 _
Oy = 471'35 + log(4me™ 7).

Next we compute the d; counterterm by considering a 1-loop correction to the 4-point scalar interaction. Setting
the external momenta to zero, we have at 1-loop that:

\4 ’ ' k ,/ \A\ P i \\ i \‘\ k)T , \ J
T et -y e T N
= /X\ K + ké b—k + ké éf@/\/\ + _kl“ VT_]C + ®+
SN o= Plante okt 20 . ¥
> » -k X & v & Ly ﬁ v o
—
FY—ll)oop AS At Au Aw 41 61
7'Ijgzll)oop ZA& + ZAt + ZAu + ZAw + 4161

Computing the iA, contribution using Feynman rules (and taking into account the sign from fermion
interchange) yields

ku(—ky) ko(—kx)
k8

4
iNy = (—1)(—2/\2)2(2)\2)2/(gﬁl;z"l Ti(o*[*) 0?5  0*[5"]" o)

kukukoky

d*k ,
:—16)\% /W Tr(gz[UH]TUQU 0'2[ ]T )\) ks
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The expression using the trace simplifies using the fact that o2[6#]70? = o# together with an identity for

the trace
Tr(02 [E“]T026”02[EP}T0)‘) = Tr(U“E”JPE)‘)
_ Q[qugkp 4 gung\ _ guAng _ Z-euvkp] )
Using the fact that k,g""k, = k-k = k?, the exoression for iA, simplifies

Kk ki
k8

. dk )
iNy = —32)\3 / o) (g‘“’g/\/’ + ghPgvN — gt gvP — g Euw\p)

d*k 1
_ 2
B 732)\2/ (2m)4 k1

Next we introduce a mass regulator M, such that M? << p? to regulate the IR divergence

d*k 1 dk 1
A - _39 2 — _39 2./ E
Hhy = -3 A2/ )t (2 a2 — 02N | i 2 1 )

where we Wick rotated, setting k% := —ik?, k%, := k' so id*kp = d*k and k? = —k%. From this together with
our standard d-dimensional integral identities we can dimensionally regularise this loop integral as follows. Set
d = 4 — ¢, expanding up to first order then yields

dk 1 2i)\3 [2 i
: _ _9o:\4(,,2\4—d E __ 2 |4 L
ihy = —320N4(2) /QMMW+M%2 = L+bg@w>+0@}

Similarly, to compute the iAg we apply the Feynman rules to the s-channel diagram to get our loop expression.
Performing the calculation just as we did above and expanding to first order we obtain

A, = (742,)\1)2/ (d4k (i%)

27T)4 <k2 _ m2)2

i} [2 12
= 721 { + log (rl:ﬁ) —I—O(e)} .

g

Again, applying the Feynman rules to the t and u-channel diagrams, gives expressions of the form
. . . 1.
iANg =1A;, and A, = §2AS.

Putting everything together, the 1-loop amplitude for the 4-point function is found to be

RS

1-loop

= A, + il + iAy + Ay + 4idy

5
= Sil\s +ihy + didy

Hence, our counterterm must be of the form

4|2
1 [5Xf /2 fi 203 /2 2
= | (Z410g| 5 ) ) -2 (= +log(
il G o) - (Ere i)

Since we are in the MS scheme the counterterm is then redefined, dropping finite terms, and adding universal

1
61 = -7 |:5As + Aw:|

constants. Therefore our final counterterm in the renormalized PT theory is given by

1
51 = ~ e (5)\‘1l — 4)\‘21) + log(4me™ 7).
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4 One-Loop p-Functions for £ and RG Flow

To compute the g functions for the parameters in our theory we use the Callman-Symanzik equation,

0 1

where 6, = B % and 6z, = —Ai%. Recall the counterterms we deduced for £ in the previous section:
2 22 2
0y = 4%55 +log(dme™ 7)), §,, = 271_2 +log(dme™7E), b4 = 471_;6 + log(4me™7E),
0 = ~ e (5A1 — 4A3) + log(4me™77) and 4§y = 0.
The beta function for A? is then found by using the formula above with B = —1(5)\4 — 4)3), where we sum
over four external legs in the self interaction vertex each contributing Ay = _W that is

4
/\2
Bra (A1, A3) = —2 (8 5 (A — 4Ag)> -y

=1

_ 1 BT — 4M3) +4X2 A3
*ﬁ( 1—40y) + 4N 32

1
= H(A;* +4AX2N2 —4(\2 = \2)).

To compute the beta function for Ay we again use the same formula however this time B = 0 as Jo =0,

3
A2 A2 3A3
2 42\ _ 2 2 A A 9AY
6,\2()\1,)\2)——23—)\22141_ A3 [2( 87r2) 874 =55
Having obtained [y, for the linear coupling, we now use the chain rule to translate it into the flow of its square

0 0 3A5
Brg = N@O\%(M)) = 2>\2M87L()\2(M)) =2Mb, = 5

Next we analyse the renormalization group flow of the beta functions, in particular we consider whether the

condition A\? = A2 is stable under renormalization group flow. Let

Ap) == A3 (1) — A3 (w),

then if A = 0 stays zero for all scales, the condition is said to be preserved. Let ¢t = log(u) the RG equation

gives
dA  d
B
= Brz(A1,A3) — Brz(M, A3)
= —(X1 +4ANIA2 +4(\2 - \2)) — 333
4 2 1 172 1 2 47_‘_2
1
= 73 (AT = A (AT +323) +4(A1 = A) (AT + A3))
2 2
_ (5BA\ + 7)\2)A
472
Since 221 4+z 2 > 0, by the above 4 E = 0 if A =0 for all ¢, and hence all scales p. Therefore the condition

A1 = Az is preserved under renormalization group evolution. Moreover we see that |A| deceases in the IR and
increases in the UV.
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