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1 Introduction
We would like to know the answer to the following question:

Question 1.1. What is the number Nd of degree d rational curves that pass through (3d−1) points in general position
on the plane?

One way to proceed is to get our hands dirty and see if we can spot some kind of pattern. Well, the case when
n = 1 reduces to a basic question that one first encounters early in school, namely:

Question 1.2. How many lines pass between two points in the plane?

The answer if of course 1, so the number of degree 1 rational curves that pass through 2 marked points which are
in general position is 1. The next iteration of the question would be for when the degree is 2.

Question 1.3. How many conics pass between five points in the plane?

Once again the answer is classically known to be 1 and has been known at least since the time of Apollonius (∼
200B.C). We can show this by construction as follows: consider points (xi, yi) with 1 ≤ i ≤ 5 in general position then
we have the determinant

f(X, Y ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 X Y X2 Y 2 XY

1 x1 y1 x2
1 y2

1 x1y1

1 x2 y2 x2
2 y2

2 x2y2

1 x3 y3 x2
3 y2

3 x3y3

1 x4 y4 x2
4 y2

4 x4y4

1 x5 y5 x2
5 y2

5 x5y5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1)

The determinant here is a polynomial of degree 2 (i.e a conic) in X and Y and substituting in any of our five points
we have f(xi, yi) = 0 as this would yield two identical rows. Therefore five points determine a unique conic in P2.

Question 1.4. How many cubics pass between 8 points in the plane?

This is a much less elementary question and the answer is 12 as computed by Chasles/Steiner in the early 19th
century. A sketch of the argument for the proof is given:

Consider a line f(x, y) + tg(x, y) = 0 with coordinate t in the space of cubics i.e deg(f) = deg(g) = 3. The cubics
can be seen as a family over P1

[t]. We now compute the Euler characteristic of the total space S in two ways: By
Bezout’s theorem f and g intersect at nine points corresponding to nine lines. If P ∈ P2 is not one of those nine points
then there is one cubic in the family that contains such a point. The total space can be recognized as the blowup of
P2 at 9 points, and hence has Euler characteristic χ(S) = χ(P2 \ 9P0 ⊔ 9P1) = 3 − 9 · 1 + 9 · 2 = 12. Alternatively,
viewing the family fiberwise, the generic fiber is a smooth cubic (torus) and the nodal cubic has χ(Cnodal) = 1 and the
Euler characteristic of the family is χ(S) = nnodalχ(Cnodal) + nsmoothχ(Csmooth) = nnodal, which gives nnodal = 12.

To summarize we have found that N1 = N2 = 1, and N3 = 12. It wasn’t until the late 19th century that N4 = 620
was computed by Schubert/Zeuthen, and it wasn’t until the mid 20th century that we found N5 = 87304. Our results
so far are then

1, 1, 12, 620, 87304, . . .

Given this data it is not all clear what N6 should be, and that was the state of things... until Maxim Kontsevich
discovered the general recursive formula finding Nd for all d ≥ 0 in 1993. Deriving this recursion will be the subject of
this talk and on the way we will build on the Gromov-Witten theory introduced in the seminar and give motivation
for the introduction of quantum cohomology.



Adam Monteleone Quantum Cohomology

2 Quantum Cohomology
Let X be a smooth, projective, homogeneous variety. Observe that on H∗(X) there is an associative cup product and
a bilinear non-degenerate pairing ⟨−, −⟩ : H∗(X) × H∗(X) −→ H∗(X) given by

⟨α, β⟩ :=
∫

α ∪ β. (2)

The cup product and the non-degenerate bilinear pairing ⟨−, −⟩ give H∗(X) the structure of a Frobenius algebra,
with unit the fundamental class 1X ∈ H0(X). We can generalize this structure by defining the multiplication:

α1 ∗β α2 = ev3∗(ev∗
1(α1) ∪ ev∗

2(α2)), (3)

where the moduli space considered is M0,3(X, β). We introduce a formal parameter qβ for each element β ∈ H2(X;Z)+

with rule qβ1qβ2 = qβ1+β2 . Thus we define

α1 ∗ α2 =
∑

β∈H2(X)

(α1 ∗β α2)qβ (4)

and extend this product Q[[H2(X;Z)+]]-linearly to H∗(X) ⊗ Q[[H2(X;Z)+]]. The coefficients are the genus-zero,
three point Gromov-Witten invariants. That is, if {Ti}m

i=0 is a basis for H∗(X) then we can write the small quantum
product as

α1 ∗ α2 =
∑

β∈H2(X)

⟨α1, α2, Ti⟩0,3,βgijTjqβ where gef =
∫

X

Te ∪ Tf , and gef := (gef )−1. (5)

The resulting structure on this vector space QH∗
s (X) is called the small quantum cohomology of X.

Theorem 2.1. The small quantum cohomology QH∗
s (X) is a Frobenius algebra with the same unit of H∗(X).

Example 2.2. QH∗
s (Pn) ∼= Q[H][[q]]/(Hn+1 − q) where H is the class of a hyperplane in H2(Pn).

The small quantum cohomology ring of Pn is a deformation of the usual cohomology ring that contains the 3-point
information. Therefore the gromov witten numbers Nd do not appear in the small quantum cohomology of P2. If we
want to go beyond the information of 3-point functions and consider n-point functions, we need to study an object
known as the big quantum cohomology associated to X. We define the Gromov-Witten potential:

Φ(γ) :=
∑
n≥3

∑
β

⟨γn⟩0,n,β

n! qβ (6)

Here we use the notation that γn = γ, . . . , γ, n-times. Let γ =
∑

i yiTi, we obtain a formal power series in the yi given
by:

Φ(y0, . . . , ym) =
∑

n0+···+nm=n
β∈H2(X;Z)

⟨T n0
0 , . . . , T nm

m ⟩0,n,β
yn0

0
n0! · · · ynm

m

nm! . (7)

Remark 2.3. By [[FP97], Lem 15] we have that for any n, there are only finitely many β such that ⟨γn⟩0,n,β are
nonzero.

Example 2.4. The Gromov-Witten potential for P2 with γ = y01 + y1H + y2H2 ∈ H∗(P2) is given by

Φ(γ) = 1
2(y0y2

1 + y2
0y2) +

∞∑
d=1

Nd
y3d−1

2
(3d − 1)!e

dy1 (8)

It will be convenient to define the following bit of notation Φijk := ∂i∂j∂kΦ with 0 ≤ i, j, k ≤ m.

Definition 2.5. Let X be a smooth projective variety, and let {Ti}i be a basis for H∗(X). The big quantum
product on H∗(X)[[y0, . . . , ym, q]] is defined on the basis T0, . . . , Tm as

Ti ∗b Tj :=
∑
e,f

ΦijeT e, where T e =
∑
f=1

gef Tf (9)
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where the product is then extended Q[[y0, . . . , ym]]-linearly to a product on the Q[[y0, . . . , ym]]-module H∗(X) ⊗Z

Q[[y0, . . . , ym]] making it a Q[[y0, . . . , ym]]-algebra.

Remark 2.6. One should check that the product defined above is indeed well-defined. That is, given a basis T ′
0, . . . , T ′

m,

there is a linear change of coordinates from H∗(X) ⊗ Q[[y0, . . . , ym]] to H∗(X) ⊗ Q[[y′
0, . . . , y′

m]] identifying the two
product structures.

Example 2.7. The big quantum product for P2 with basis T0 = 1, T1 = [L] and T2 = [pt] for H∗(P2) is given by

T 0 = T2 = [pt] T 1 = T1 = [L] and T 2 = T0 = 1 = [P2]. (10)

Using the potential for P2 defined above, we find

[L] ∗ [L] =
2∑

k=0
ΦkT k = Φ110[pt] + Φ111[L] + Φ112[P2] =

(∫
P2

[L] ∪ [L]
)

[pt] + Φ111[L] + Φ112[P2]. (11)

Using Φ110 = 1 =
∫
P2 [L] ∪ [L] we see that we now have additional higher order terms to the classical cup product.

It’s natural to ask what properties such a multiplication has, in particular whether it’s associative or commutative.
Well, commutativity is clear as the product is symmetric in the subscripts i.e ϕijk = Φjik

Tj ∗ Ti =
∑

k

ΦjikT k =
∑

k

ΦijkT k = Ti ∗ Tj . (12)

For associativity, we have

(Ti ∗ Tj) ∗ Tk =
∑
e,f

Φijegef Tf ∗ Tk =
∑
e,f

∑
c,d

Φijegef ΦfkcgcdTd (13)

Ti ∗ (Tj ∗ Tk) =
∑
e,f

Φjkegef Ti ∗ Tf =
∑
e,f

∑
c,d

Φjkegef ΦifcgcdTd, (14)

and since the matrix gcd is non-singular the equality of (Ti ∗ Tj) ∗ Tk = Ti ∗ (Tj ∗ Tk) is equivalent to the following
non-linear partial differential equation ∑

e,f

Φijegef Φfkl =
∑
e,f

Φjkegef Φifl, (15)

called the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation. A (formal) solution to this nonlinear PDE
is called a Gromov-Witten potential. One can also show T0 = 1 is a unit for the ∗-multiplication.

Definition 2.8. The big quantum product endows H∗(X) ⊗ Q[[y0, . . . , ym]] with a multiplication. The ring

QH∗(X) := H∗(X) ⊗ Q[[y0, . . . , ym]], (16)

is called the big quantum cohomology ring of X.

Theorem 2.9 ([FP97], Thm 4). The biq quantum cohomology ring QH∗(X) is a commutative, associate
Q[[y0, . . . , ym]]-algebra with unit T0. In other words it is a Frobenius algebra.

Example 2.10. When X = P2 the big quantum cohomology ring of X has the identification

QH∗(P2) ∼=
Q[[y0, y1, y2]][Z]

Z3 − Φ111Z2 − 2Φ112Z − Φ122
, (17)

which we can compare with the cohomology ring H∗
Q(P2) ∼= Q[Z]/Z3 with basis {1, Z, Z2}.
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3 The Gromov-Witten Theory of P2

Recall the Gromov-Witten potential for P2, where γ = y01 + y1H + y2H2 ∈ H∗(X) is given by

Φ(γ) = 1
2(y2

0y2 + y0y2
1) +

∞∑
d=1

Nd
edy1y3d−1

2
(3d − 1)! qd. (18)

Using the associativity of the big quantum cohomology product, one can derive the WDVV equation for P2, which
has the form

Φ222 = Φ2
112 − Φ111Φ122. (19)

Computing the term on the left hand side gives

Φ222 =
∞∑

d=1
Nd

edy1y3d−4
2

(3d − 4)! qd. (20)

On the right hand side we compute

Φ2
112 =

( ∞∑
d=1

d2Nd
edy1y3d−2

2
(3d − 2)! qd

)2

(21)

=
∞∑

d=1

∑
d=d1+d2

d2
1d2

2Nd1Nd2

edy1y3d−4
2

(3d1 − 2)!(3d2 − 2)!q
d, (22)

and

Φ111Φ122 = ∂3
1Φ · ∂1∂2

2Φ (23)

=
( ∞∑

d=1
d3Nd

edy1y3d−1
2

(3d − 1)! qd

)( ∞∑
d=1

dNd
edy1y3d−3

2
(3d − 3)! qd

)
(24)

=
∞∑

d=1

∑
d=d1+d2

d3
1d2Nd1Nd2

edy1y3d−3
2

(3d1 − 1)!(3d2 − 3)! . (25)

Equating coefficients of both sides for a fixed value of d we obtain

Nd

(3d − 4)! =
∑

d=d1+d2

Nd1Nd2

[
d2

1d2
2

(3d1 − 1)!(3d2 − 2)! + d3
1d2

(3d1 − 1)!(3d2 − 3)!

]
. (26)

Rearranging and using d2 = d − d1, we derive Kontsevich’s formula for the Gromov-Witten invariants of P2.

Theorem 3.1 (Kontsevich 1993). The number of rational curves Nd of degree d that pass through (3d − 1) points
which are in general position in the P2, satisfies the recursion relation

Nd =
∑

d=d1+d2

Nd1Nd2

[
d2

1d2
2

(
3d − 4
3d1 − 2

)
− d1d2

(
3d − 4
3d1 − 1

)]
. (27)

where N1 = 1.

Computing Nd for d = 1, . . . , 8 using Kontsevich’s formula gives

N1 = 1, N2 = 1, N3 = 12, N4 = 620, N5 = 87, 304,

N6 = 26, 312, 976, N7 = 14, 616, 808, 192,

N8 = 13, 525, 751, 027, 392.
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