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1 Introduction

We would like to know the answer to the following question:

Question 1.1. What is the number Ny of degree d rational curves that pass through (3d — 1) points in general position
on the plane?

One way to proceed is to get our hands dirty and see if we can spot some kind of pattern. Well, the case when
n = 1 reduces to a basic question that one first encounters early in school, namely:

Question 1.2. How many lines pass between two points in the plane?

The answer if of course 1, so the number of degree 1 rational curves that pass through 2 marked points which are
in general position is 1. The next iteration of the question would be for when the degree is 2.

Question 1.3. How many conics pass between five points in the plane?

Once again the answer is classically known to be 1 and has been known at least since the time of Apollonius (~
200B.C). We can show this by construction as follows: consider points (x;,y;) with 1 < ¢ <5 in general position then
we have the determinant
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The determinant here is a polynomial of degree 2 (i.e a conic) in X and Y and substituting in any of our five points
we have f(z;,7;) = 0 as this would yield two identical rows. Therefore five points determine a unique conic in P2.

Question 1.4. How many cubics pass between 8 points in the plane?

This is a much less elementary question and the answer is 12 as computed by Chasles/Steiner in the early 19th
century. A sketch of the argument for the proof is given:

Consider a line f(z,y) + tg(x,y) = 0 with coordinate ¢ in the space of cubics i.e deg(f) = deg(g) = 3. The cubics
can be seen as a family over P[lt]. We now compute the Euler characteristic of the total space S in two ways: By
Bezout’s theorem f and g intersect at nine points corresponding to nine lines. If P € P2 is not one of those nine points
then there is one cubic in the family that contains such a point. The total space can be recognized as the blowup of
P2 at 9 points, and hence has Euler characteristic x(S) = x(P? \ 9P° U9P') =3 —9-1+9 -2 = 12. Alternatively,
viewing the family fiberwise, the generic fiber is a smooth cubic (torus) and the nodal cubic has x(Choda1) = 1 and the
Euler characteristic of the family is X(S) = nnodalX(Cnodal) + nsmoothX(Csmooth) = Npodal, Which gives nyoqa1 = 12.

To summarize we have found that N; = Ny = 1, and N3 = 12. It wasn’t until the late 19th century that N4 = 620
was computed by Schubert/Zeuthen, and it wasn’t until the mid 20th century that we found N5 = 87304. Our results
so far are then

1,1,12,620,87304, ...

Given this data it is not all clear what Ng should be, and that was the state of things... until Maxim Kontsevich
discovered the general recursive formula finding Ny for all d > 0 in 1993. Deriving this recursion will be the subject of
this talk and on the way we will build on the Gromov-Witten theory introduced in the seminar and give motivation
for the introduction of quantum cohomology.
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2  Quantum Cohomology

Let X be a smooth, projective, homogeneous variety. Observe that on H*(X) there is an associative cup product and
a bilinear non-degenerate pairing (—, —) : H*(X) x H*(X) — H*(X) given by

(@8)= [aus. (2)

The cup product and the non-degenerate bilinear pairing (—, —) give H*(X) the structure of a Frobenius algebra,

with unit the fundamental class 1x € H°(X). We can generalize this structure by defining the multiplication:
o *g ag = evs.(evi (o) Uevi(az)), (3)

where the moduli space considered is Mg 3(X, ). We introduce a formal parameter ¢° for each element 3 € Ho(X;7Z)
with rule ¢?1¢%> = ¢/ P2, Thus we define

% Qg = Z (o1 %5 az)q” (4)
BEH(X)

and extend this product Q[[H2(X;Z)4]]-linearly to H*(X) ® Q[[H2(X;Z),]]. The coefficients are the genus-zero,
three point Gromov-Witten invariants. That is, if {T;}", is a basis for H*(X) then we can write the small quantum

product as

oy * Qg = Z (a1, 09, T)o3.59"7Tjq” where g.; = / T.UTy, and g% = (gos) 7" (5)
BEH(X) *

The resulting structure on this vector space QH(X) is called the small quantum cohomology of X.
Theorem 2.1. The small quantum cohomology QH!(X) is a Frobenius algebra with the same unit of H*(X).
Example 2.2. QH:(P") = Q[H][[q]]/(H"*! — q) where H is the class of a hyperplane in H?(P").

The small quantum cohomology ring of P" is a deformation of the usual cohomology ring that contains the 3-point
information. Therefore the gromov witten numbers Ny do not appear in the small quantum cohomology of P2. If we
want to go beyond the information of 3-point functions and consider n-point functions, we need to study an object
known as the big quantum cohomology associated to X. We define the Gromov-Witten potential:

B(y) = Z Z Mqﬁ (6)

n!
n>3 S
Here we use the notation that v =+, ...,v, n-times. Let v = >, y;T;, we obtain a formal power series in the y; given
by:
Yo' Ym"
OYorosym) = S0 (T T Yo 2 (7)
ngo: N+
no+:--F+nm=n
BEH(X;Z)

Remark 2.3. By [[FP97], Lem 15] we have that for any n, there are only finitely many § such that (y")o . g are

nonzero.

Example 2.4. The Gromov-Witten potential for P? with v = yol1 + y1 H + yo H? € H*(P?) is given by

1 0 ySdfl
o _ 2 2 N 2 dy1
(v) = 5 (wou + wiy2) + dz::l Bl (8)

It will be convenient to define the following bit of notation ®;;;, := 0;0;0,® with 0 <4,7,k < m.

Definition 2.5. Let X be a smooth projective variety, and let {T;}; be a basis for H*(X). The big quantum
product on H*(X)[[yo, - - -, Ym, q]] is defined on the basis Ty, ..., T, as

T;s, Tj = _ ®3;.T°, where T¢ =Y g/ T} (9)
e, f f=1
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where the product is then extended Ql[yo, .. .,ym]]-linearly to a product on the Q[[yo, ..., ¥ym|-module H*(X) ®z
Q[[yo, - - - , ym]] making it a Q[[yo, . - ., ym]]-algebra.

Remark 2.6. One should check that the product defined above is indeed well-defined. That is, given a basis T3, ..., 1),
there is a linear change of coordinates from H*(X) ® Q[[yo, - - -, ¥m]] to H*(X) @ Q[[yo, - - - , Y., ]] identifying the two
product structures.

Example 2.7. The big quantum product for P? with basis Ty = 1,7y = [L] and Ty = [pt] for H*(IP?) is given by
T =Ty =[pt] T'=T,=[L]and T? =Ty =1 = [P?]. (10)

Using the potential for P2 defined above, we find

(L] [L] = > @ T% = ®110[pt] + Pra[L] + Pr12[P?] = (/P

U [L]) P + Sl + SiaF. (1)
k=0

2

Using @119 = 1 = [5.[L] U [L] we see that we now have additional higher order terms to the classical cup product.

It’s natural to ask what properties such a multiplication has, in particular whether it’s associative or commutative.

Well, commutativity is clear as the product is symmetric in the subscripts i.e ¢;;r = Pjix

Tj *,Tz :Zq)jika :Zq)ijka Z’Ti*Tj. (12)
k k
For associativity, we have
(TixTp) # Tio =Y Bijeg™ Ty # Tio =D > Bijeg™ ® preg™Ty (13)
e, f e,f c,d
Ti * (1} * Tk) = Z (I)jkegef,-ri * Tf = Z Z (I)jkegef(pifcgalea (14)
e, f e,f c,d

and since the matrix ¢ is non-singular the equality of (7T} * T;) Ty, = T; * (T; = Ty;) is equivalent to the following

non-linear partial differential equation

Z Dyjeg® D ppy = Z Djkeg™ @i, (15)
e.f e,f

called the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation. A (formal) solution to this nonlinear PDE

is called a Gromov-Witten potential. One can also show Ty = 1 is a unit for the *-multiplication.

Definition 2.8. The big quantum product endows H*(X) ® Q|[[yo, - - -, Ym]] with a multiplication. The ring

QH(X) := H*(X) ® Ql[yo, - - -, yml], (16)
is called the big quantum cohomology ring of X.

Theorem 2.9 ([FP97], Thm 4). The biqg quantum cohomology ring QH*(X) is a commutative, associate
Ql[yo, - - - , ym]]-algebra with unit Ty. In other words it is a Frobenius algebra.

Example 2.10. When X = P2 the big quantum cohomology ring of X has the identification

Qllyo, y1, y2]][Z]
Z3 — 011122 — 281127 — P12o’

QH*(P?) =

which we can compare with the cohomology ring Hg(P?) = Q[Z]/Z* with basis {1, Z, Z*}.
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3 The Gromov-Witten Theory of P?

Recall the Gromov-Witten potential for P2, where v = yol +y1 H + y2 H?> € H*(X) is given by

edyig3a=1

1
Yoy + you?) +ZNd ;

5 G (18)

P(y) =

Using the associativity of the big quantum cohomology product, one can derive the WDVV equation for P2, which
has the form
Pago = Py — D111 Proa. (19)

Computing the term on the left hand side gives

dyly?)d 4 d
) Nyg—"=— 20
222 = Z d (3d— 4) (20)
On the right hand side we compute
2
dyl 3d—2
2 _ 2 Y2 d
Piyp = (Zd Nd (3d — 2)! q > (21)
e dyy ,,3d—4
= Z Z d%d%Ndl Nd2 ¢ Y2 qd, (22)
puri iy (3d; — 2)!1(3d2 — 2)!
and
D111 P1oy = 7P - 9,050 (23)
edy1 g 3d—1 ey 3d=3
Yo
&3NS dN, 24
(z ) (e )
dy1y3d 3
= d3daNg, N, 25
Z D> dideNa, “(3d; — 1)1(3dy — 3)! (25)
d=1d=d;+d>
Equating coefficients of both sides for a fixed value of d we obtain
d2d? did
N, N, L 12 : 26
3d 4 = > Nul, [ 34, — 1)!(3ds —2)! * (3dy —1)!(3d5 — 3)! (26)

d=d1+d2
Rearranging and using dy = d — dy, we derive Kontsevich’s formula for the Gromov-Witten invariants of P2.

Theorem 3.1 (Kontsevich 1993). The number of rational curves Ny of degree d that pass through (3d — 1) points

which are in general position in the P?, satisfies the recursion relation

3d—4 3d—4
Na, Na, |d3d3 —did . 2
Z dq d2|:1 2<3d1_2) 1 2<3d1—1>:| (7)
d=d1+d2
where N1 = 1.
Computing Ny for d =1, ..., 8 using Kontsevich’s formula gives

Ny=1, Ny=1, N3=12, N, =620, Ns= 87,304,

Ng = 26,312,976, N, = 14,616,808, 192,

Ng = 13,525, 751,027, 392.
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