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1. DERIVED CATEGORIES

1.1. Introduction. The theory of derived categories, introduced by Grothendieck and Verdier, provides a powerful
tool for studying the geometry of algebraic varieties via their categories of coherent sheaves. The derived category
of a variety (or more generally, a scheme) encodes a vast amount of information about the underlying geometry.
Therefore one can typically recover cohomological and numerical invariants from the derived category. It has even
been shown that in certain cases one can reconstruct the variety from the derived category [Section 4, [BO95al].
In this talk we provide an overview of derived categories in algebraic geometry, describing some of the major
machinery used throughout the literature, most notably the Fourier-Mukai transform. We then describe derived
equivalences of smooth projective varieties, and in particular study derived equivalences of K3 surfaces.

1.2. Derived Categories. In this lecture we will primarily be interested in the derived category D(Coh(X)) where
X is a scheme. However the construction of the derived category is more general, and so it makes sense to define
the derived category D(.A) with respect to an arbitrary abelian category .A.

Remark 1.1. If A is an abelian category the category Kom(.A) of cochain complexes with objects in A is abelian.

Concretely, the derived category D(.A) of an abelian category A has objects given by cochain complexes of A,
Obj(D(A)) := Obj(Kom(A)).

The morphisms are slightly more complicated. For A®, B®* € D(A) the collection of morphisms Homp4)(A®, B®)
are defined as all equivalence classes of diagrams

. C.
A B*

where C®* — A® is a quasi-isomorphism. Two such diagrams are equivalent if they are dominated by a third such
diagram in the homotopy category K(.A).

qis -
.
.
.
.
7/
/

where the compositions C* — C7 — A® and C* — C5 — A® are homotopy equivalent. Note that the commutativity
of this diagram is only required up to homotopy because the construction of the mapping cone is unique only up
to homotopy. To define composition consider the two morphisms

cs &
V \ V \
A* B* B* c*
we define their composite to be given by a commutative diagram (in the homotopy category K(A)) of the form
O.
2N
ar C3
v N
A. B. C.

It remains to show that such a diagram as claimed always exists and is unique up to equivalence.
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The derived category D(.A) therefore essentially is the category of chain complexes with quasi-isomorphisms
inverted. For instance in Kom(AbGrp) we have a quasi-isomorphism f : A* — B*® corresponding to the diagram

A® 0 Z X2 z 0
| | | |
B* 0 0 7)27 0

We cannot however have a quasi-isomorphism in the opposite direction as there are no non-trivial group
homomorphisms from Z/27Z to Z. In the derived category though an inverse does exist as we can have diagrams

A* A*
5N N
A* B* B A*
Definition 1.2. Let f : A* — B*® be a morphism of complexes in K(A) or D(.A) its mapping cone is the complex

c(f)' = A" @ B" and di( ;) = 7di‘+1 0
: c(f) - fz-‘rl dZB

Let A be an abelian category, the derived category D(.A) is triangulated.

Definition 1.3. An additive category T is triangulated if it has an autoequivalence ¥ : 7 — T and a collection of
exact triangles

A B C YA
that satisfy (TR1) - (TRA4).
The derived category D(A) is triangulated with autoequivalence given by shift functor [1] : D(A) — D(A) with
(A*[1])" = A" and dlyapy) i= —di
We can compose A with itself to get the k-shifted complex
AC[R]" := AN with diyyy = (—1)Fd,
The exact triangles in D(A) are just triangles isomorphic to the triangle

A* B* Cone(f) — A*[1]

where the maps B®* — Cone(f) and Cone(f) — C*® are just the natural inclusion B®* — A°®[1] @ B* and projection
map A*[1] & B®* — B°.

Definition 1.4. Let X be a scheme, then Coh(X) is an abelian category. We denote by D?(Coh(X)) the bounded®
derived category of coherent sheaves of X.

For notational convenience we make the following definition
D(X) := D’(Coh(X)).

Remark 1.5. The category Coh(X) does not have enough injectives so we usually pass to Qcoh(X) at least when
X is Noetherian. Therefore in what follows we always assume X is Noetherian.

Definition 1.6. Let X and Y be schemes then X and Y are said to be derived equivalent if there exists a k-linear
exact equivalence,

D(X) ~D(Y).

Remark 1.7. Tt is well known that there exists non-birational Calabi-Yau’s which are derived equivalent.

hounded just means each complex has finitely many non-zero terms.



1.3. Serre Functors.

Definition 1.8. Let X be a smooth projective variety of dimension n. Then one defines the exact functor Sx as
the composition

wx®(—) [n]

D(X) D(X) ———— D(X).

This functor is an example of a Serre functor (definition B.1). This is a generalisation of the familiar notion of
Serre duality to the level of derived categories.
Theorem 1.9. (Serre Duality) Let X be a smooth projective variety over k then
Sx : D(X) — D(X) where Sx (=) =wx @ (—)[n].
is a Serre functor. Hence Ext'(E, F) = Hom(&, Fli]) implies Ext' (£, F) ~ Ext" (F,£ @ wx)*.
Example 1.10. If X is Calabi-Yau i.e wx = Ox then Sx = [n].

2. FOURIER-MUKAI TRANSFORMS

Let X and Y be smooth projective varieties over k an algebraically closed field of characteristic 0. and denote
the two projections by

X xY
PN
X Y
Definition 2.1. Let P € D*(X x Y). The induced Fourier-Mukai transform is the functor
®p : D(X) = D(Y), where £ — Rp,(Lg*E® @“ P),
where P is called the Fourier-Mukai kernel of the Fourier-Mukai transform ®p.

Remark 2.2. Lq* = ¢* since the projection map ¢ is flat and the left derived tensor product @ coincides with the
ordinary tensor product when the kernel P is a complex of vector bundles.

Composing two Fourier-Mukai functors gives another Fourier Mukai functor up to isomorphism

Proposition 2.3 ([Muk81]). Let ®p : D(X) — D(Y) and &g : D(Y) — D(Z) be Fourier-Mukai functors. The
composition

D(X) — % DY) —22 . D2),
is isomorphic to the Fourier-Mukai transform ®x : D(X) — D(Z).

When computing Fourier-Mukai transforms the following two results are frequently applied

Theorem 2.4 ([Huy06]). (Projection Formula) Let f : X — Y be a proper morphism of projective schemes over
k. For any F* € D(X),&* € DY) there exists a natural isomorphism

~

Rf.(F*) @ & = Rf.(F* @ Lf*(E%)).

Theorem 2.5 ([Huy06]). Let f : X — Y be a morphism of projective schemes and let F*,E® € D(Y'). Then there
exists a natural isomorphism

Lf(F)@“Lf (%) = Lf*(F* @ &°).

Example 2.6. Let I'y : X — X x Y be the diagonal map, where Or, = (I's).Ox. Moreover let ¢ : X x Y — X
and p: X XY — Y be projections onto the X and Y factors respectively, then from the pullback diagram

X f
N‘
Xxy —2 3y
idx
x— 1 Ly
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we can compute the following Fourier-Mukai transform
Por, (F*) = Rp.(Lq* @ Oa)
= pu(q” @ (T'f).Ox) (remark 2.2)
=, (Ts)(Ty)"¢" F* @0, Ox)  (projection formula)
=(poly)lgoly)(F7)
= [o(idx)*(F7)
= £.(F)

Setting the map f = id in the above example we recover the well known result ®p, (F) = F.

We now come to Orlov’s celebrated result.

Theorem 2.7 ([Orl03]). (Orlov’s Theorem) Let X and Y be two smooth projective varieties and let
F:D(X)— D(Y),
be a fully faithful exact functor. If F admits a right and left adjoint then there exists an object P € D(X x Y)
unique up to isomorphism such that F is isomorphic to ®p, that is
F ~ op.
Orlov’s theorem is most often applied to equivalences:

Corollary 2.8. Let F : D(X) = D(Y) be an equivalence between the derived category of smooth projective varieties
over k. Then F is isomorphic to a Fourier-Mukai transform ®p associated to a certain object P € D(X xY), which
s unique up to isomorphism.

Theorem 2.9 ([BO95b]). Let X andY be smooth projective varieties. The Fourier-Mukai transform ®p : D(X) —
D(Y) is fully faithful if and only if for any two closed points x,y € X one has

k ifz=y andi=0;

Hom(®p(0y), p(Oy)[i]) = {0 ifx £y ori<0 ori>dim(X).

Remark 2.10. This full-faithfulness criterion as well as Orlov’s theorem have been considerably generalized. Recently
Orlov’s theorem was generalized to smooth proper tame stacks in [Pen24]. Similarly the full-faithfullness criterion
was also generalized to smooth proper Deligne-Mumford stacks® in [HP24].

Corollary 2.11. Suppose ®p : D(X) — D(Y) is a fully faithful functor. Then the functor ®p is an equivalence if
and only if dim(X) = dim(Y") and
PRq¢wx ~PRpwy.
Cohomological Fourier-Mukai Transform. Let X and Y be smooth projective varieties over k. Suppose
®p : D(X) — D(Y) is a Fourier-Mukai transform. For any cohomology class a € H*(X x Y, Q) we have
o7 g*(X;Q) — H*(Y;Q) given by 3 — p.(¢"B.a),

where o := v(P) = ch(P)./td(X xY).

Remark 2.12. The cohomological Fourier-Mukai transform is used extensively when proving criterions relating
derived categories to the underlying cohomology of the variety. It particular it is used extensively in the proof of
theorem 3.7.

This section so far has been a summary of almost all the important results needed to work with derived categories
and derived functors. However we have not given some of the more basic combaitibilities of derived functors in
algebraic geometry. For the rigorous approach to dualities and derived categories, see either [Con00] or [LH09]. For
a thorough survey of Fourier-Mukai transforms in algebraic geometry, see [Huy06].

2This generalization of the full faithfullness theorem to stacks will be the subject of Jack’s talk next week.



3. DERIVED EQUIVALENCES OF K3 SURFACES

We now study the rich theory of derived equivalences of K3 surfaces. Recall the definition of a K3 surface:
Definition 3.1. A K3 surface® is a compact complex surface X with trivial canonical bundle
wx ~ Ox and H(X,0x) = 0.
Remark 3.2. Every K3 surface is Kéahler.
Remark 3.3. Algebraic K3 surfaces are dense in the moduli space of all K3 surfaces.
Question 1. When are two K3 surfaces equivalent?
Answer:

Theorem 3.4 ([PSS71]). (Global Torelli Theorem) Two complex K3 surfaces X andY are isomorphic if and only
if there exists a Hodge isometry

H*(X;Z) - H*(Y;Z).

Remark 3.5. Originally proven by Pyatetski-Shapiro-Shafarevich in 1971 in the paper [PSS71] for algebraic K3
Surfaces. This result was then extended to all K3 surfaces by numerous authors, most notably in the work of
Gritsenko-Hulek—Sankaran [GHS07].

It is natural to then formulate the derived analogue of question 1:
Question 2. When are two K8 surfaces derived equivalent?
Let X be a K3 surface then
H*(X;Z)= H°(X;Z)® H*(X;Z) ® H*(X;Z).
The Mukai pairing (—, —) : H*(X;Z) x H*(X;Z) — H*(X;7Z) = 7Z is defined as the pairing
(o, B) = @181 — cBa — B € HY(X;Z) 5 Z,
where a = (ag, a1, as) and 3 = (Bo, B1, f2) with ay, B; € H*(X;Z).

Definition 3.6. A Mukai lattice for X a K3 surface denoted H(X;Z) is the integral cohomology ring H*(X;Z)
along with the Mukai pairing (—, —) defined as above.

A K3 surface admits a weight two Hodge decomposition
H?9(X) ~ H>°(X)
HY (X))~ HY (X))@ HY(X) @& H*(X)
H*?(X) ~ H*?(X).
Theorem 3.7 ([Muk84], [Or197]). (Derived Torelli Theorem) Let X and Y be K3 surfaces with Mukai lattices
H(X;Z) and H(Y;Z) respectively, then there is a derived equivalence
D(X) ~ D(Y),
if and only if there exists a Hodge isometry between Mukai lattices H(X;Z) — H(Y;Z).
Remark 3.8. Mukai initially proved the forward direction in [Muk84], later Orlov proved the converse in [Or]197].
Let X be a K3 surface we define the set of Fourier-Mukai partners
FM(X) = {Y|D(X) = D(Y)}/ =,
where ~ quotient by autoequivalences.
Remark 3.9. Since X € FM(X) the set of Fourier-Mukai partners for X is never empty.

A famous example of a K3 surface is a Kummer surface X. Kummer surfaces are obtained from resolving an
abelian surface A/ ~ where we have taken a quotient by the involution corresponding to the inversion map.

Example 3.10. Let X be the Kummer surface associated to an abelian surface A, that is X = Km(A) then
FM(X) = {X}.
Therefore given any two Kummer surfaces X = Km(A) and Y = Km(B) with A and B abelian surfaces then
D(A) ~D(B) if and only if X ~ Y.

3The name ‘K3 surface’ was introduced by André Weil in honor of the three algebraic geometers, Kummer, Kahler and Kodaira. A
play on words with the famous mountain K2 in Kashmir.



We conclude this talk with some recent results for derived equivalence of K3 surfaces in positive characteristic.
Suppose k is an algebraically closed field with positive characteristic.

Theorem 3.11 (Theorem 6.1, [LO11]). (Derived Torelli Theorem — Positive Characteristic)
Let X andY be K3 surfaces over k. If there exists a kernel P € D(X xY) such that we have a filtered equivalence
D(X) —» D(Y) then

X~Y.

Remark 3.12. See paragraph 2.11 in Lieblich—Olsson [LO11] for the precise definition of filtered equivalence.

Theorem 3.13 (Theorem 4.1, [LO11)). If X and Y are K3 surfaces over a finite field F and derived equivalent,
(i,e D(X) ~D(Y)) then X and Y have the same zeta-function and the same number of points over F.

#X(F) = #Y(F).



APPENDIX A. TRIANGULATED CATEGORIES

Triangulated Categories as we will define were first introduced and developed in 1962-1963 by Dieter Puppe and
Jean-Louis Verdier respectively. Puppe was an algebraic topologist primarily interested in triangulated categories as
an abstraction of the stable homotopy category whilst Verdier, who at the time was a PhD student of Grothendieck,
was an algebraic geometer interested in how the derived category admits this triangulated structure. Both Puppe
and Verdier gave similar definitions of a triangulated category at around the same time with the only notable
difference being Verdier’s inclusion of the octahedral axiom (TR4)%

Definition A.1. Let T be a category equipped with an automorphism ¥ : 7 — 7. A triangle (A, B,C) where
A,B,C € T is an ordered triple (u,v,w) of morphisms where u: A — B, v: B — C and w : C — Y A. That is a
triangle

A—— B —— (C — XA

Definition A.2. A morphism of triangles is a triple (f, g, h) forming a commutative diagram in 7T :
B——C—"—> %A

A
J f Jg h J{Zf
4

’ ’

B - C —*— 3A

An isomorphism of triangles is then defined in the natural way.

Definition A.3. Let 7 be an additive category. Then 7T is a triangulated category if 7 admits an additive
equivalence ¥ : T — T, called the translation or shift functor, and a collection of distinguished (or exact) triangles
in 7, which are triangles (u, v, w) that satisfy the following four axioms:

(TR1) i) Every morphism u : A — B can be embedded in an exact triangle (u,v,w).
ii)Any triangle of the form

A4 0 YA

is exact.
iii) if (u,v,w) is a triangle on (4, B, C), isomorphic to an exact triangle (v/,v’,w’) on (4’, B’,C") then (u,v,w) is
also exact.

A—— B —"5C—> %A

R

’ ’ /

A—— B "~ C 2> 3A

(TR2) (Rotation). If (u,v,w) is an exact triangle on (A, B, C)

C
% N

A u—— B

then both its “rotates” (—X~!w,u,v) and (v, w, —Yu) are exact triangles on (=X~ 1w, u,v) and (B, C,XA)

YA B
7N SN

—Xu w v u
9 N K AN
v— C D10 nte s A

(TR3) Suppose there exists a commutative diagram of distinguished triangles (4, B,C) and (A’, B/, C") with
vertical arrows f: A — A’ and g : B — B’: Then the diagram can be completed to a morphism of triangles, by a
non-unique morphism h : C — C’.

'+ B "+ (C "> 3XA

A
lf lg 3h lzf
A

’ ’

LN - Y SN (RN )Y

4hence why (TR4) is sometimes referred to as the Verdier axiom.



(TR4)(Octahedral axiom/Verdier axiom) Given objects A, B,C, A", B',C" € T, if there are three exact
triangles: (u,j,d) on (A, B,C"), (v,z,i) on (B,C,A’) and (vu,y,d) on (4,C,B’).
C c’ B’
SN SN SN
1%} J % z ) Y
K AN / ~N / AN
v——> B A v—> B’ A vu —— C'

A

Then there is a fourth exact triangle (f, g, (X7)i) on (C’, B’, A’) such that in the following octahedron the four exact
triangles form four of the faces and the remaining faces commute.

5
B{A’/ vu
h \

o=

Remark A.4. There is some uncertainty as to whether TR4 is the “right” axiom for the definition of a triangulated
category, and whether instead it is more natural to impose that the morphisms of distinguished triangles should
admit mapping cones which also form distinguished triangles. In [Nee0l] Neeman calls such a condition (TR4’)
and in particular shows that (TR4’) implies the octahedral axiom (TR4), with the converse implication proven in
[Nee91]. For the reader interested in further such discussion see [Nee91] and the relevant sections of [May01].

Definition A.5. An additive functor F': T — 7’ between triangulated categories 7 and 7" is called exact if the
following conditions are satisfied

(1) There exists a functorial isomoprhism F o Ty = T o F.

(2) Any distinguished triangle

A B c Al

in 7 is mapped to a distinguished triangle
F(A) ——— F(B) F(C) F(A)[1]
in 7" where F(A[1]) is identified with F'(A)[1] via the functor isomorphism in 1).

Definition A.6. A subcategory 7' C T of a triangulated category is a triangulated subcategory if 7’ admits the
structure of a triangulated category such that the inclusion i : 7/ — T is exact.

Proposition A.7. Let T' C T be a full subcategory. T is a triangulated subcategory if and only if T' is invariant
under the shift functor ¥ : T — T and for any distinguished triangle

A B c Al

we have that C =2 D for D € T.
Definition A.8. Two triangulated categories 7 and 7' are equivalent if there exists an exact equivalence F' : T —
T
Definition A.9. A triangulated category 7 is decomposable into triangulated subcategories A C T and B C T if
the following three conditions are satisfied:

(1) The categories A and B contain objects non-isomorphic to 0.

(2) For every object F' € T, there exists a distinguished triangle
A F B All]

where A € A and B € B.
(3) For every pair of objects By € 71 and Bs € Ts, there exist no morphisms in 7 between them, i.e.,

Hom(Bl, B2) = HOIH(BQ, Bl) =0.



APPENDIX B. PROPERTIES OF TRIANGULATED CATEGORIES

Definition B.1. Let A be a k-linear category. A Serre functor S : A — A is an additive functor that is also an
autoequivalence such that for any two objects A, B € T there exists an isomorphism

na,B : Hom(A, B) — Hom(B, S(A4))".
Proposition B.2 ([BK90]). Any Serre functor on a triangulated category over a field k is exact.
Definition B.3. Let 7 be a triangulated category. A subclass 2 C T of the objects of T is called a spanning class
of T if for any object B € T:
(1) Homy (A, B[i]) =0 for all A € Q and all i € Z, then B = 0.
(2) Homy(BJi],A) =0 for all A€ and all i € Z, then B = 0.

Proposition B.4 (Corollary. 3.19, [Huy06]). If X is a smooth projective variety and L is an amble line bundle on
X, then the powers L',i € Z, form a spanning class in D(X).

Example B.5. Let £* € D(X) be any object and
gL .= {F* € D(X) | Hom(E*, F°[i]) = 0 for all i € Z}.
Then Q = {£°} UE*L C D(X) is a spanning class.
Remark B.6. If the triangulated category admits a Serre functor, conditions (1) and (2) above are equivalent.

Proposition B.7 ([Or197]). Let F : T — T’ be an exact functor between triangulated categories with left and right
adjoints: G 4 F 4 H. Suppose Q is the spanning class of T such that for all objects A, B € ) and all i € Z the
natural homomorphisms

F : Hom(A, BJ[i]) - Hom(F'(A), F(BJi]))
are bijective. Then F is fully faithful.
Proposition B.8 (Corollary, 1.56, [Huy06]). Let F : T — T’ be an exact functor between triangulated categories

T and T' with left adjoint F - H. Furthermore assume that Q is a spanning class of T satisfying the following
conditions

(1) For all A, B € Q the natural morphisms
Hom (A, B[i]) — Hom(F(A), F(B)[i]),
are bijective for all i € 7.
(2) The categories T and T' admit Serre functors St and respectively St such that for all A € Q,

F(S7(A)) = 57/ (F(A)).
(3) The category T is indecomposable and T is non-trivial.
Then F' is an equivalence.
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