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1. INTRODUCTION

1.1. Motivation. This lecture aims to introduce the main objects of study for the rest of the seminar, higher stacks
following [Kha23]. Therefore we give many definitions in rapid succession with few examples left until the end.

1.2. Derived Stacks. Fix R a commutative ring. Recall from the end of last week that Fei described étale descent.
Definition 1.1. A derived stack is a functor X : dCAlg, — Grpd,, satisfying étale descent.

where dCAlgy := Anim(CAlgy) is the category of derived R-algebras. Let ACRing := Anim(CRing), then in
particular dCAlg, ~ ACRing. We denote the co-category of derived stacks by

DStk := Shv(dCAlg%’, Grpd,,).

Example 1.2. An affine derived scheme over R is a derived stack, where Spec(A) : ACRing — Grpd,, with
B — Maps(A, B) corepresented by an animated ring A € dCAlgp, .

Definition 1.3. Let X : dCAlgy — Grpd,, be a derived stack, the restriction of X along CRing — ACRing is the
functor X.; : CRing — Grpd, called the classical truncation of X.

For instance if X is a derived algebraic stack then in particular X : CAlgy — Grpd is an algebraic stack.
Moreover the classical truncation of the derived fiber product is the usual fiber product, that is

(X xBY)u~ X x V.
Example 1.4. The classical truncation of a derived affine scheme over R is Spec(A)q =~ Spec(mg(A)).
Remark 1.5. If the oo-groupoid X (A) is 1-truncated if for all A € dCAlgy then X : CAlg — Grpd is a stack.
1.3. Derived Schemes.

Definition 1.6. Let U and X be derived stacks, with morphism j: U — X

(1) If U and X are affine j is an open immersion if it is étale (Ox — Oy is an étale morphism of derived
R-algebras) and Ug — X, is an open immersion (classically).

(2) If X is affine j is an open immersion if it is a monomorphism (the diagonal U — U xy U is an isomorphism)
and there exists a collection of affines (U, ), and a surjection U,U, — U such that U, - U — X is an
open immersion of affines.

(3) In general, the morphism j is an open immersion if for every affine S and every S — X the product
U xx S — S is an open immersion to an affine.

Definition 1.7. A derived stack X is a derived scheme if there exists a collection (U, < X), of open immersions
where U, are affine derived schemes, and a surjection ]_[a U, — X.

Remark 1.8. A derived scheme X is O-truncated, in the sense that the functor X : dCAlgr — Grpd,, takes values
in sets (= O-truncated or discrete co-groupoids).

Definition 1.9. A morphism f: X — Y is schematic if for every affine V' and every morphism V' — Y the derived
fibered product X x{} Y is a derived scheme.

Definition 1.10. A schematic morphism f: X — Y of derived stacks is smooth (resp. étale) if for every affine V
and every morphism V' — Y there exists a collection of open immersions (U, — X Xy Y'), where each U, is affine
and each composite

Uy > X Xy V=V,

is a smooth (resp. étale) morphism of affines.



2. DERIVED ALGEBRAIC STACKS

We now define higher Artin stacks by induction:

Definition 2.1. A derived stack X : ACRing — Grpd, is 0-Artin, or a derived algebraic space if

(1) the diagonal X — X x X is schematic and a monomorphism;
(2) there exists an étale surjection U — X where U is a derived scheme.

Definition 2.2. A morphism f : X — Y is 0-Artin, or representable if for every affine V' and every morphism
V — Y the fibered product X x£ V is a derived algebraic space (0-Artin).

Definition 2.3. A 0-Artin morphism f: X — Y is flat (resp. smooth, surjective) if for every affine V' and every
morphism V' — Y there exists a derived scheme U and an étale surjection U — X Xy V such that the composition

Uy = X xy V=V,
is flat (resp. smooth, surjective).
For n > 0, inductively we define

Definition 2.4. For n > 1 a morphism of derived stacks f : X — Y is (n — 1)-Artin if for every affine V' and every
morphism V' — Y the fibered product X x# V is (n — 1)-Artin.

Definition 2.5. A derived stack X is n-Artin if its diagonal is (n — 1)-Artin and there exists a smooth surjection
U — X where U is a derived scheme.

Definition 2.6. An (n — 1)-Artin morphism is f : X — Y is flat (resp. smooth or surjective) if there exists a
derived scheme U and a smooth surjection such that the composition

U—-Xxy V-V
is flat (resp. smooth or surjective).
Following Gaitsgory we redefine Artin stacks to be higher Artin stacks, and algebraic stacks to be 1-Artin stacks.
Definition 2.7. A derived stack is Artin if it is n-Artin for some n.
Definition 2.8. A morphism f: X — Y of derived stacks is Artin if it is n-Artin for some n.

Definition 2.9. A morphism of derived stacks is flat (resp. smooth or surjective) if it is n-Artin and flat (resp.
smooth or surjective) for some n.

Remark 2.10. An n-Artin stack takes values in n-groupoids i.e., in co-groupoids that are n-truncated.

Definition 2.11. A derived algebraic stack X over R is Deligne-Mumford if it admits an étale surjection U — X
from a derived scheme U. Equivalently if its classical truncation X : dCAlgr — Grpd is a Deligne-Mumford stack.

Artin Level Description
0-Artin Derived Algebraic Spaces
1-Artin + X is DM Derived Deligne-Mumford Stacks
1-Artin Derived Algebraic Stacks

Mapping stacks give a large class of examples of derived algebraic stacks. Let X be a smooth and proper scheme
over R.

Example 2.12. The moduli stack of perfect complexes over X is the derived stack Mpere(x) = Maps(X, Mpert).
For A € dCAlg,., its A-points are morphisms X4 := X x Spec(A) — M over Spec(A), i.e., perfect complexes
on Xy4.

Example 2.13. Let G be a smooth group scheme, the Moduli stack Mpgun,(x) = Maps(X, BG) of G-torsors (a.k.a
principal G-bundles) over X is a derived algebraic stack. For A € dCAlgpg, it’s A-points are morphisms X4 — BG
over Spec(A) i.e, G-torsors on X 4.

Example 2.14. The moduli stack of vector bundles on X is the substack Mvect(x) © Mpert(x) defined as follows:
for A € dCAlgg, an A-point of Me¢(x) belongs to Myect(x) if and only if the corresponding perfect complex
F € Dpere(X 4) is connective and flat over X 4.
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