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1. Introduction

1.1. Motivation. This lecture aims to introduce the main objects of study for the rest of the seminar, higher stacks
following [Kha23]. Therefore we give many definitions in rapid succession with few examples left until the end.

1.2. Derived Stacks. Fix R a commutative ring. Recall from the end of last week that Fei described étale descent.

Definition 1.1. A derived stack is a functor X : dCAlgR −→ Grpd∞ satisfying étale descent.

where dCAlgR := Anim(CAlgR) is the category of derived R-algebras. Let ACRing := Anim(CRing), then in
particular dCAlgZ ≃ ACRing. We denote the ∞-category of derived stacks by

DStk := Shv(dCAlgopR ,Grpd∞).

Example 1.2. An affine derived scheme over R is a derived stack, where Spec(A) : ACRing −→ Grpd∞ with
B 7→ Maps(A,B) corepresented by an animated ring A ∈ dCAlgR .

Definition 1.3. Let X : dCAlgR −→ Grpd∞ be a derived stack, the restriction of X along CRing ↪→ ACRing is the
functor Xcl : CRing −→ Grpd∞ called the classical truncation of X.

For instance if X is a derived algebraic stack then in particular Xcl : CAlgR −→ Grpd is an algebraic stack.
Moreover the classical truncation of the derived fiber product is the usual fiber product, that is

(X ×R
Z Y )cl ≃ X ×Z Y.

Example 1.4. The classical truncation of a derived affine scheme over R is Spec(A)cl ≃ Spec(π0(A)).

Remark 1.5. If the ∞-groupoid X(A) is 1-truncated if for all A ∈ dCAlgR then Xcl : CAlg −→ Grpd is a stack.

1.3. Derived Schemes.

Definition 1.6. Let U and X be derived stacks, with morphism j : U −→ X

(1) If U and X are affine j is an open immersion if it is étale (OX −→ OU is an étale morphism of derived
R-algebras) and Ucl −→ Xcl is an open immersion (classically).

(2) If X is affine j is an open immersion if it is a monomorphism (the diagonal U −→ U×U U is an isomorphism)
and there exists a collection of affines (Uα)α and a surjection ⊔αUα −→ U such that Uα −→ U −→ X is an
open immersion of affines.

(3) In general, the morphism j is an open immersion if for every affine S and every S −→ X the product
U ×X S −→ S is an open immersion to an affine.

Definition 1.7. A derived stack X is a derived scheme if there exists a collection (Uα ↪→ X)α of open immersions
where Uα are affine derived schemes, and a surjection

∐
α Uα −→ X.

Remark 1.8. A derived scheme X is 0-truncated, in the sense that the functor X : dCAlgR −→ Grpd∞ takes values
in sets (= 0-truncated or discrete ∞-groupoids).

Definition 1.9. A morphism f : X −→ Y is schematic if for every affine V and every morphism V −→ Y the derived
fibered product X ×R

V Y is a derived scheme.

Definition 1.10. A schematic morphism f : X −→ Y of derived stacks is smooth (resp. étale) if for every affine V
and every morphism V −→ Y there exists a collection of open immersions (Uα −→ X ×V Y )α where each Uα is affine
and each composite

Uα −→ X ×Y V −→ V,

is a smooth (resp. étale) morphism of affines.
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2. Derived Algebraic Stacks

We now define higher Artin stacks by induction:

Definition 2.1. A derived stack X : ACRing −→ Grpd∞ is 0-Artin, or a derived algebraic space if

(1) the diagonal X −→ X ×X is schematic and a monomorphism;
(2) there exists an étale surjection U −→ X where U is a derived scheme.

Definition 2.2. A morphism f : X −→ Y is 0-Artin, or representable if for every affine V and every morphism
V −→ Y the fibered product X ×R

Y V is a derived algebraic space (0-Artin).

Definition 2.3. A 0-Artin morphism f : X −→ Y is flat (resp. smooth, surjective) if for every affine V and every
morphism V −→ Y there exists a derived scheme U and an étale surjection U −→ X ×Y V such that the composition

Uα −→ X ×Y V −→ V,

is flat (resp. smooth, surjective).

For n > 0, inductively we define

Definition 2.4. For n ≥ 1 a morphism of derived stacks f : X −→ Y is (n− 1)-Artin if for every affine V and every
morphism V −→ Y the fibered product X ×R

Y V is (n− 1)-Artin.

Definition 2.5. A derived stack X is n-Artin if its diagonal is (n− 1)-Artin and there exists a smooth surjection
U −→ X where U is a derived scheme.

Definition 2.6. An (n − 1)-Artin morphism is f : X −→ Y is flat (resp. smooth or surjective) if there exists a
derived scheme U and a smooth surjection such that the composition

U −→ X ×Y V −→ V

is flat (resp. smooth or surjective).

Following Gaitsgory we redefine Artin stacks to be higher Artin stacks, and algebraic stacks to be 1-Artin stacks.

Definition 2.7. A derived stack is Artin if it is n-Artin for some n.

Definition 2.8. A morphism f : X −→ Y of derived stacks is Artin if it is n-Artin for some n.

Definition 2.9. A morphism of derived stacks is flat (resp. smooth or surjective) if it is n-Artin and flat (resp.
smooth or surjective) for some n.

Remark 2.10. An n-Artin stack takes values in n-groupoids i.e., in ∞-groupoids that are n-truncated.

Definition 2.11. A derived algebraic stack X over R is Deligne-Mumford if it admits an étale surjection U −→ X
from a derived scheme U . Equivalently if its classical truncation Xcl : dCAlgR −→ Grpd is a Deligne-Mumford stack.

Artin Level Description
0-Artin Derived Algebraic Spaces

1-Artin + Xcl is DM Derived Deligne-Mumford Stacks
1-Artin Derived Algebraic Stacks

Mapping stacks give a large class of examples of derived algebraic stacks. Let X be a smooth and proper scheme
over R.

Example 2.12. The moduli stack of perfect complexes over X is the derived stack Mperf(X) = Maps(X,Mperf).
For A ∈ dCAlgr, its A-points are morphisms XA := X × Spec(A) −→ Mperf over Spec(A), i.e., perfect complexes
on XA.

Example 2.13. Let G be a smooth group scheme, the Moduli stack MBunG(X) = Maps(X,BG) of G-torsors (a.k.a
principal G-bundles) over X is a derived algebraic stack. For A ∈ dCAlgR, it’s A-points are morphisms XA −→ BG
over Spec(A) i.e, G-torsors on XA.

Example 2.14. The moduli stack of vector bundles on X is the substack MVect(X) ⊆ Mperf(X) defined as follows:
for A ∈ dCAlgR, an A-point of Mperf(X) belongs to MVect(X) if and only if the corresponding perfect complex
F ∈ Dperf(XA) is connective and flat over XA.
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