

DAG Seminar: Derived Algebraic Stacks

Adam Monteleone

September 17, 2024

1. INTRODUCTION

1.1. Motivation. This lecture aims to introduce the main objects of study for the rest of the seminar, higher stacks following [Kha23]. Therefore we give many definitions in rapid succession with few examples left until the end.

1.2. Derived Stacks. Fix R a commutative ring. Recall from the end of last week that Fei described étale descent.

Definition 1.1. A derived stack is a functor $X : \mathrm{dCAlg}_R \rightarrow \mathrm{Grpd}_\infty$ satisfying étale descent.

where $\mathrm{dCAlg}_R := \mathrm{Anim}(\mathrm{CAlg}_R)$ is the category of derived R -algebras. Let $\mathrm{ACRing} := \mathrm{Anim}(\mathrm{CRing})$, then in particular $\mathrm{dCAlg}_\mathbb{Z} \simeq \mathrm{ACRing}$. We denote the ∞ -category of derived stacks by

$$\mathrm{DStk} := \mathrm{Shv}(\mathrm{dCAlg}_R^{\mathrm{op}}, \mathrm{Grpd}_\infty).$$

Example 1.2. An affine derived scheme over R is a derived stack, where $\mathrm{Spec}(A) : \mathrm{ACRing} \rightarrow \mathrm{Grpd}_\infty$ with $B \mapsto \mathrm{Maps}(A, B)$ corepresented by an animated ring $A \in \mathrm{dCAlg}_R$.

Definition 1.3. Let $X : \mathrm{dCAlg}_R \rightarrow \mathrm{Grpd}_\infty$ be a derived stack, the restriction of X along $\mathrm{CRing} \hookrightarrow \mathrm{ACRing}$ is the functor $X_{\mathrm{cl}} : \mathrm{CRing} \rightarrow \mathrm{Grpd}_\infty$ called the classical truncation of X .

For instance if X is a derived algebraic stack then in particular $X_{\mathrm{cl}} : \mathrm{CAlg}_R \rightarrow \mathrm{Grpd}$ is an algebraic stack. Moreover the classical truncation of the derived fiber product is the usual fiber product, that is

$$(X \times_Z^R Y)_{\mathrm{cl}} \simeq X \times_Z Y.$$

Example 1.4. The classical truncation of a derived affine scheme over R is $\mathrm{Spec}(A)_{\mathrm{cl}} \simeq \mathrm{Spec}(\pi_0(A))$.

Remark 1.5. If the ∞ -groupoid $X(A)$ is 1-truncated if for all $A \in \mathrm{dCAlg}_R$ then $X_{\mathrm{cl}} : \mathrm{CAlg} \rightarrow \mathrm{Grpd}$ is a stack.

1.3. Derived Schemes.

Definition 1.6. Let U and X be derived stacks, with morphism $j : U \rightarrow X$

- (1) If U and X are affine j is an open immersion if it is étale ($\mathcal{O}_X \rightarrow \mathcal{O}_U$ is an étale morphism of derived R -algebras) and $U_{\mathrm{cl}} \rightarrow X_{\mathrm{cl}}$ is an open immersion (classically).
- (2) If X is affine j is an open immersion if it is a monomorphism (the diagonal $U \rightarrow U \times_U U$ is an isomorphism) and there exists a collection of affines $(U_\alpha)_\alpha$ and a surjection $\sqcup_\alpha U_\alpha \rightarrow U$ such that $U_\alpha \rightarrow U \rightarrow X$ is an open immersion of affines.
- (3) In general, the morphism j is an open immersion if for every affine S and every $S \rightarrow X$ the product $U \times_X S \rightarrow S$ is an open immersion to an affine.

Definition 1.7. A derived stack X is a derived scheme if there exists a collection $(U_\alpha \hookrightarrow X)_\alpha$ of open immersions where U_α are affine derived schemes, and a surjection $\coprod_\alpha U_\alpha \rightarrow X$.

Remark 1.8. A derived scheme X is 0-truncated, in the sense that the functor $X : \mathrm{dCAlg}_R \rightarrow \mathrm{Grpd}_\infty$ takes values in sets (= 0-truncated or discrete ∞ -groupoids).

Definition 1.9. A morphism $f : X \rightarrow Y$ is schematic if for every affine V and every morphism $V \rightarrow Y$ the derived fibered product $X \times_V^R Y$ is a derived scheme.

Definition 1.10. A schematic morphism $f : X \rightarrow Y$ of derived stacks is smooth (resp. étale) if for every affine V and every morphism $V \rightarrow Y$ there exists a collection of open immersions $(U_\alpha \rightarrow X \times_V Y)_\alpha$ where each U_α is affine and each composite

$$U_\alpha \rightarrow X \times_Y V \rightarrow V,$$

is a smooth (resp. étale) morphism of affines.

2. DERIVED ALGEBRAIC STACKS

We now define higher Artin stacks by induction:

Definition 2.1. A derived stack $X : \text{ACRing} \rightarrow \text{Grpd}_\infty$ is 0-Artin, or a derived algebraic space if

- (1) the diagonal $X \rightarrow X \times X$ is schematic and a monomorphism;
- (2) there exists an étale surjection $U \rightarrow X$ where U is a derived scheme.

Definition 2.2. A morphism $f : X \rightarrow Y$ is 0-Artin, or representable if for every affine V and every morphism $V \rightarrow Y$ the fibered product $X \times_Y^R V$ is a derived algebraic space (0-Artin).

Definition 2.3. A 0-Artin morphism $f : X \rightarrow Y$ is flat (resp. smooth, surjective) if for every affine V and every morphism $V \rightarrow Y$ there exists a derived scheme U and an étale surjection $U \rightarrow X \times_Y V$ such that the composition

$$U \rightarrow X \times_Y V \rightarrow V,$$

is flat (resp. smooth, surjective).

For $n > 0$, inductively we define

Definition 2.4. For $n \geq 1$ a morphism of derived stacks $f : X \rightarrow Y$ is $(n-1)$ -Artin if for every affine V and every morphism $V \rightarrow Y$ the fibered product $X \times_Y^R V$ is $(n-1)$ -Artin.

Definition 2.5. A derived stack X is n -Artin if its diagonal is $(n-1)$ -Artin and there exists a smooth surjection $U \rightarrow X$ where U is a derived scheme.

Definition 2.6. An $(n-1)$ -Artin morphism is $f : X \rightarrow Y$ is flat (resp. smooth or surjective) if there exists a derived scheme U and a smooth surjection such that the composition

$$U \rightarrow X \times_Y V \rightarrow V$$

is flat (resp. smooth or surjective).

Following Gaitsgory we redefine Artin stacks to be higher Artin stacks, and algebraic stacks to be 1-Artin stacks.

Definition 2.7. A derived stack is Artin if it is n -Artin for some n .

Definition 2.8. A morphism $f : X \rightarrow Y$ of derived stacks is Artin if it is n -Artin for some n .

Definition 2.9. A morphism of derived stacks is flat (resp. smooth or surjective) if it is n -Artin and flat (resp. smooth or surjective) for some n .

Remark 2.10. An n -Artin stack takes values in n -groupoids i.e., in ∞ -groupoids that are n -truncated.

Definition 2.11. A derived algebraic stack X over R is Deligne-Mumford if it admits an étale surjection $U \rightarrow X$ from a derived scheme U . Equivalently if its classical truncation $X_{\text{cl}} : \text{dCAlg}_R \rightarrow \text{Grpd}$ is a Deligne-Mumford stack.

Artin Level	Description
0-Artin	Derived Algebraic Spaces
1-Artin + X_{cl} is DM	Derived Deligne-Mumford Stacks
1-Artin	Derived Algebraic Stacks

Mapping stacks give a large class of examples of derived algebraic stacks. Let X be a smooth and proper scheme over R .

Example 2.12. The moduli stack of perfect complexes over X is the derived stack $\mathcal{M}_{\text{perf}(X)} = \underline{\text{Maps}}(X, \mathcal{M}_{\text{perf}})$. For $A \in \text{dCAlg}_R$, its A -points are morphisms $X_A := X \times \text{Spec}(A) \rightarrow \mathcal{M}_{\text{perf}}$ over $\text{Spec}(A)$, i.e., perfect complexes on X_A .

Example 2.13. Let G be a smooth group scheme, the Moduli stack $\mathcal{M}_{\text{Bun}_G(X)} = \underline{\text{Maps}}(X, \text{BG})$ of G -torsors (a.k.a principal G -bundles) over X is a derived algebraic stack. For $A \in \text{dCAlg}_R$, its A -points are morphisms $X_A \rightarrow \text{BG}$ over $\text{Spec}(A)$ i.e., G -torsors on X_A .

Example 2.14. The moduli stack of vector bundles on X is the substack $\mathcal{M}_{\text{Vect}(X)} \subseteq \mathcal{M}_{\text{perf}(X)}$ defined as follows: for $A \in \text{dCAlg}_R$, an A -point of $\mathcal{M}_{\text{perf}(X)}$ belongs to $\mathcal{M}_{\text{Vect}(X)}$ if and only if the corresponding perfect complex $\mathcal{F} \in \text{D}_{\text{perf}}(X_A)$ is connective and flat over X_A .

REFERENCES