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Throughout this talk let k be a field, and let C be a smooth, geometrically connected, projective curve over
k. The category of coherent sheaves of OC -modules over C will be denoted by Coh(C) and the subcategory of
locally free sheaves of rank r and degree d will be denoted Vectr,d(C). We will employ the usual conflation of
locally free sheaves and vector bundles. Recall the inclusions Vectr,d(C) ⊆ Vect(C) ⊆ Coh(C) ⊆ QCoh(C).

1 Coherent Sheaves on Projective Curves
We would like to understand the moduli of coherent sheaves on a smooth projective curve, the aim of this talk
is to see that this reduces to the study of semistable and stable bundles on curves.

Let F ∈ Coh(C) be a coherent sheaf of OC -modules on C, we define the torsion subsheaf of F to be

Ftors(U ) := F(U)tors where U ⊆ C.

Since Ftors ⊆ F and Coh(C) is an abelian category there is an exact sequence

0 Ftors F Ffree 0

where Ffree := F/Ftors. To see that this sequence splits take the long exact sequence in Hom(Ffree, −)

HomOC
(Ffree, Ftors) HomOC

(Ffree, F) HomOC
(Ffree, Ffree)

Ext1
OC

(Ffree, Ftors) Ext1
OC

(Ffree, F) Ext1
OC

(Ffree, Ffree)

Moreover
Ext1

OC
(Ffree, Ftors) = H1(C, Ftors ⊗ F∨

free) = 0,
as Ftors ⊗ F∨

free has a zero-dimensional support and sheaves supported at finitely many points have vanishing
higher cohomology by Grothendieck vanishing [[Har77], Thm III.2.7]. Therefore the first line of our long exact
sequence becomes the short exact sequence

0 Hom(Ffree, Ftors) Hom(Ffree, F) Hom(Ffree, Ffree) 0

The morphism idFfree : Ffree −→ Ffree then lifts non-canonically to a section s : Ffree −→ F which by the splitting
lemma splits the exact sequence. We have shown the following
Proposition 1.1. Every coherent sheaf F ∈ Coh(C) is (non-canonically) isomorphic to a direct sum

F ∼−→ Ffree ⊕ Ftors.

From this decomposition we conclude that to understand a coherent sheaf F on a smooth curve C over
k it suffices to understand locally free sheaves (vector bundles) and torsion sheaves on a curve. Using this
decomposition we can now extend notions of degree and rank to vector bundles. Let E ∈ Vect(C) then we
define the determinant line bundle of a vector bundle E to be its highest nonzero exterior power. The degree of
a vector bundle is then defined as

deg(E) := deg(det(E)) where det(E) :=
r∧

E .

Moreover this definition of degree is extended to all F ∈ Coh(C) by setting

deg(F) := dimk(H
0(C, Ftors)) + deg(Ffree).

Alternatively, one could define the degree via the Riemann-Roch Theorem for coherent sheaves over C

deg(F) = χ(C, F) − rank(F)χ(C, OC),

where χ(C, F) =
∑

i≥0(−1)ihi(C, F) is the Euler characteristic of F . The rank of F is then defined by

rank(F) := dimκ(η)(F ⊗ κ(η)) where η ∈ C is the generic point and κ(η) = K(C).

This last definition can be equivalently stated as rank(F) = rank(Ffree) as torsion vanishes at the generic point.
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Proposition 1.2. The functions deg : K0(C) −→ Z and rank : K0(C) −→ Z are group homomorphisms in
particular for an exact sequence of coherent sheaves

0 F ′ F F ′′ 0,

we have the additive formulas

deg(F) = deg(F ′) + deg(F ′′) and rank(F) = rank(F ′) + rank(F ′′).

Proof sketch. The additivity of rank follows from the fact that taking stalks at the generic point is exact.
The Euler characteristic of a coherent sheaf can be shown to be additive by taking the long exact sequence in
cohomology and applying the rank-nullity theorem. The additivity of degree then follows from the Riemann-
Roch theorem for coherent sheaves.

Proposition 1.3. Let E1 ∈ Vectr1,d1(C) and E2 ∈ Vectr2,d2(C) be vector bundles on C then

deg(E1 ⊗ E2) = r2 deg(E1) + r1 deg(E2).

Proof. It can be shown that there is a canonical isomorphism det(E1⊗E2) ∼= (det E1)⊗r2 ⊗ (det E2)⊗r1 . It follows

deg(E1 ⊗ E2) = deg(det(E1 ⊗ E2))

= deg
(
(det E1)

⊗r2 ⊗ (det E2)
⊗r1
)

= r2 deg(det E1) + r1 deg(det E2)

= r2 deg(E1) + r1 deg(E2),

where we have used the fact that for line bundles deg(L ⊗ L′) = deg(L)+deg(L′) see [[Har77], Prop II.6.13].

Definition 1.4. The slope of a coherent sheaf F ∈ Coh(C) is defined to be

µ(F) :=
deg(F)

rank(F)
∈ Q ∪ {∞},

with the convention that µ(F) := ∞ if F is torsion.

The reason for the terminology "slope" will become evident in example 2.8 when we compute the Harder-
Narasimhan polygon of a sheaf.

Example 1.5. If C = P1
C then

µ(OP1(n)) =
deg(OP1(n))

rank(OP1(n))
=

n

1 = n

µ(C(x)) = ∞ since C(x) is a torsion sheaf supported at x, so rank(C(x)) = 0,

µ(OP1(n) ⊕ C(x)) =
deg(OP1(n) ⊕ C(x))

rank(OP1(n) ⊕ C(x))
=

deg(OP1(n)) + deg(C(x))

rank(OP1(n)) + rank(C(x))
= n + 1.

Example 1.6. If C = E is an elliptic curve over C with O ∈ E the marked point corresponding to the identity
element then

µ(OE) =
deg(OE)

rank(OE)
=

0
1 = 0

µ(L(3O)) =
deg(L(3O))

rank(L(3O))
=

3
1 = 3

µ(L(nP )) =
deg(L(nP ))

rank(L(nP ))
=

n

1 = n.

Example 1.7. If C is a hyperelliptic curve over C of genus g(C) = 2 then

µ(ω⊗3
C ) =

deg(ω⊗3
C )

rank(ω⊗3
C )

=
3 deg(ωC))

1 =
3(2g(C) − 2)

1 = 6.
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2 Vector Bundles on Curves
By the previous section we have seen that studying coherent sheaves of OC -modules has reduced to the study
of locally free sheaves/vector bundles over C. To begin our study of vector bundles on a curve C we consider
the case where C = P1

k, here we have a well known theorem of Grothendieck and Birkhoff which states that
every vector bundle on P1

k is built from direct sums of line bundles OP1(n).

Theorem 2.1 (Birkhoff–Grothendieck). If E ∈ Vectr,d(P
1
k) then there exist unique integers d1, d2, . . . , dr ∈ Z

such that

E ∼=
r⊕

i=1
OP1(di) where d1 ≥ d2 ≥ · · · ≥ dr.

Proof. We proceed by induction. For rank(E) = 1 we have by Hartshorne [[Har77], II.6.4] every line bundle in
Pic(C) is of the form OP1(n). If rank(E) > 1 for n ∈ Z we have

Hom(OP1(n), E) ∼= H0(P1
k, E(−n))

∼= H1(P1
k, E ⊗ ωP1 ⊗ OP1(n)))∨ by Serre duality [[Har77], Thm III.7.6]

∼= H1(P1
k, E∨(n − 2))∨

∼= 0 for n >> 0 by Serre vanishing [[Har77], Prop III.5.3].

Let d1 ∈ Z be the maximal integer for which Hom(OP1(n), E) ̸= 0. Choose a nonzero morphism φ ∈
Hom(OP1(d1), E) since OP1(d1) is torsion free any nonzero map is injective, so ker(φ) = 0 and the map
φ : OP1(d1) −→ E is injective. Therefore we can form the short exact sequence

0 OP1(d1) E coker(φ) 0φ

The cokernel coker(φ) is locally free. If it were not then coker(φ)tors ̸= 0 and so we could restrict to a morphism
from a skyscraper sheaf k(x) −→ coker(φ). Now recall the exact sequence

0 OP1(−1) OP1 k(x) 0

twisting by O(d1 + 1) we obtain

0 OP1(d1) OP1(d1 + 1) k(x) 0

composition gives a morphism OP1(d1 + 1) −→ coker(φ). Moreover applying Hom(OP1(d1 + 1), −) yields the
long exact sequence

Hom(O(d1+1), O(a)) Hom(O(d1+1), E) Hom(O(d1+1), coker(φ))

Ext1(O(d1+1), O(a)) Ext1(O(d1+1), E) Ext1(O(d1+1), coker(φ))

Since Ext1(O(d1 + 1), O(d1)) ∼= H1(P1
k, OP1(−1)) = 0, the map OP1(d1 + 1) −→ coker(φ) lifts a nonzero map

OP1(d1 + 1) −→ E but this contradicts the maximality of our choice of d1. Hence coker(φ) is torsion free so it is
locally free with rank(coker(φ)) = rank(E) − 1. By the induction hypothesis the theorem holds for all sheaves
of rank less than rank(E), we conclude

coker(φ) ∼=
r⊕

i=2
OP1(di) with di ∈ Z.

We claim d1 ≥ d2 ≥ · · · ≥ dr. Consider the short exact sequence

0 OP1(d1) E
⊕r

i=2 OP1(di) 0φ

Tensoring the exact sequence by − ⊗ OP1(−d1 − 1) we obtain

0 OP1(−1) E(−d1 − 1)
⊕r

i=2 OP1(di − d1 − 1) 0
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Taking the long exact sequence in sheaf cohomology we conclude

Hi(P1
k,

r⊕
i=2

OP1(di − d1 − 1)) = 0,

which is true if and only if di − d1 − 1 < 0 hence di ≤ d1 for all i ≥ 2.
Finally to obtain the theorem it suffices to show that the exact sequence splits. Applying Hom(−, OP1(d1))

and using the result
Ext1(E , OP1(d1)) =

⊕
i≥2

H1(P1
k, OP1(d1 − di)) = 0,

as d1 − di ≥ 0 there exists a λ ∈ Hom(O(d1), O(d1)) that lifts to a retraction r ∈ Hom(E , OP1) of the short
exact sequence. Applying the splitting lemma the desired isomorphism follows

E ∼= OP1(d1) ⊕

(
r⊕

i=2
OP1(di)

)
∼=

r⊕
i=1

OP1(di) with d1 ≥ d2 ≥ · · · ≥ dr.

We omit the proof of uniqueness but remark that it follows from the fact Hom(OP1(a), OP1(b)) = 0 iff b < a.

Definition 2.2. A nonzero coherent sheaf F ∈ Coh(C) is said to be

1. µ-semistable if µ(F ′) ≤ µ(F) for every nonzero subsheaf 0 ̸= F ′ ⊆ F ;

2. µ-stable if µ(F ′) < µ(F) for every nonzero subsheaf 0 ̸= F ′ ⊊ F .

Often when it is clear from context what notion of stability is being discussed the slope µ is omitted.

Example 2.3. If C = P1
k a vector bundle E is stable if and only if E is isomorphic to OP1(n) for some n ∈ Z.

Example 2.4. If C = P1
k a vector bundle E is semistable if and only if E ∼= OP1(n)⊕r for some r ∈ Z≥0.

Example 2.5. For a fixed n ∈ Z the bundle OP1(n) ⊕ OP1(n) is semistable but not stable, note that

µ(OP1(n) ⊕ OP1(n)) =
2n

2 = n = µ(OP1(n)).

Theorem 2.6 ([HN75] Harder–Narasimhan). Every vector bundle E ∈ Vectr,d(C) admits a unique filtration

E• : 0 = E0 ⊆ E1 ⊆ · · · ⊆ En = E ,

such that each factor Ei/Ei−1 is semistable and

µ(E1/E0) > µ(E2/E1) > · · · > µ(En/En−1).

Remark 2.7. This theorem generalises the Birkhoff-Grothendieck theorem and if we specialize to the case where
C = P1

k taking direct sums of quotients recovers the theorem.
We define the charge of a coherent sheaf to be

Z(F) := − deg(F) + rank(F)i ∈ C.

Example 2.8. For the vector bundle E = O(3) ⊕ O(1) ⊕ O(−2) ∈ Coh(P1) the Harder-Narasimhan filtration
E• ∈ Filfin(Coh(C))1 is given by

E• : 0 ⊆ O(3) ⊆ O(3) ⊕ O(1) ⊆ O(3) ⊕ O(1) ⊕ O(−2) = E .

Computing the slopes we verify:

µ(O(3)/0) = 3 > µ(O(3) ⊕ O(1)/O(3)) = 1 > µ(O(3) ⊕ O(1) ⊕ (−2)/O(3) ⊕ O(1)) = −2.

Moreover computing the charges of each of the coherent sheaves we find

Z(O(3)) = −3 + i, Z(O(3) ⊕ O(1)) = −4 + 2i, and Z(O(3) ⊕ O(1) ⊕ O(−2)) = −2 + 3i.
1The category Filfin(A) consists of objects which are finite filtrations of the objects of an abelian category A.
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From these computations we see that the associated Harder-Narasimhan polygon HNP(E•) is given by

ℜ(Z) = − deg

ℑ(Z) = rk

-5 -4 -3 -2 -1

1i

2i

3i

3

1

−2

0

Z(O(3)) = −3 + i

Z(O(3) ⊕ O(1)) = −4 + 2i

Z(E) = −2 + 3i

Remark 2.9. Because of our choice of convention when defining Z, the slope of a polygon edge does not
necessarily coincide with the actual polygon slope instead it is related by −1/µ.

To understand vector bundles on curves it suffices to understand the semistable ones by the Harder-
Narasimhan theorem. In addition it turns out that every semistable vector bundle E on C admits a Jor-
dan–Hölder filtration E• where the factors gri := Ei/Ei−1 are stable vector bundles with the same slope as E .
While this filtration is not unique, the factors are unique up to permutation. By combining this with the HN
filtration, we can filter every vector bundle by stable vector bundles with the same slope as E .

Theorem 2.10 (Jordan–Hölder Filtration). Let F be a semistable vector bundle on C suppose that

0 = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En = E and 0 = E ′
0 ⊆ E ′

1 ⊆ E ′
2 ⊆ · · · ⊆ E ′

n′ = E ,

are filtrations such that the factors gri = Ei/Ei−1 and gr′
j = E ′

j/E ′
j−1 are stable vector bundles with

µ(E) = µ(gri) = µ(gr′
j),

then n = n′ and there exists a permutation σ ∈ Sn such that gri = gr′
σ(i) .

This theorem make the following definition well-defined.

Definition 2.11. The associated graded of a semistable vector bundle E is defined by

gr(E) :=
n⊕

i=1
gri,

where gri = Ei/Ei−1 are the factors with respect to any Jordan-Hölder filtration 0 = E0 ⊆ E1 ⊆ · · · ⊆ En = E .

Definition 2.12. Let E , E ′ ∈ Vectss
r,d(C) then E and E ′ are called S-equivalent (or Seshadri equivalent) written

E ∼S E ′ if
gr(E) ∼= gr(E ′).

Given a curve C studying coherent sheaves on C has now reduced to the study of the moduli space of
semistable bundles on C up to S-equivalence. There is a coarse moduli space for the moduli space for the
moduli functor parameterizing S-equivalence classes of semistable bundles on C.

Example 2.13. The Birkhoff-Grothendieck theorem (Theorem 2.1) implies

M ss
r,d(P

1) =

{
{∗} if r | d;
∅ otherwise.

In [Ati57] Michael Atiyah studied indecomposable vector bundles on an elliptic curve E in the 1950s, one of
the things he found was a nice relationship between rank, degree and semistability when gcd(r, d) = 1.

Example 2.14 ([Ati57]). Let E be an elliptic curve and let m := gcd(r, d). Then

M ss
r,d(E) =

{
Jac(E) if gcd(r, d) = 1;
Symm(E) otherwise.
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