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1 Introduction

Throughout these notes we will assume the setup of the previous talks in the seminar. However in order to make some
of the statements in these notes self contained we have included an appendix which outlines the necessary background
from the first 14 sections of Gross’ paper [Gro99] needed to understand sections 15 and 16. We encourage the reader

who has not read through these sections of Gross’ paper to look through Appendix A before proceeding.

2 Preliminary Setup

Let G be a connected, reductive algebraic group over Q satisfying condition A.1. Let Q be a fixed algebraic closure of
Q, fixaT C B C G with W(T) := Ng(T')/T, defined up to conjugacy. Associated to G we have the root datum

p(G) = (X*(T), A%, Xo(T), D),

acted upon by Gal(Q/Q). Let k be the splitting field of G, as the quasi-split inner form Gy of G is split over k.
Let G denote the dual group of G, it is unique connected reductive group over Z. This gives us a pinning GoBOT
with e, : G, = Ua for o € A over Z. We have the root datum attached to é, which in terms of T is given by

o(G) = (X, (T), Ay, X*(T), A®).

Let V be an irreducible representation of G over Q. Let K C G(@) be an open compact subgroup. The Q-vector

space of modular forms on G with coefficients in V' (restricted to K) is defined to be

M(V,K) :={f: G(A)/(GR)4 x K) = V[f(v9) = 7f(g) for v € G(Q)},

where A := R x Q are the adeles. The Q-vector space of M(V, K) admits an inner product. Let A € Endg(M(V, K))
the Q-subalgebra generated by Endg(V),

{T(950)1900 € G(R)}, and {T(9)|3 € G(Af)}.

Let mo(G(R)) = G(R)/G(R) 4, let Hx be the Hecke algebra associated to K and let E := Z(End4(N)), a number
field, in fact E is a CM field. For a simple A-submodule N C M(V, K) we can obtain via [[Gro99], Chapter 7] two

characters, and it is to these characters that we will associate with local parameters:
Yoo : To(G(R)) = (£1) C E* ~» Archimedean Parameters,

¢ : Z(Hg) = E* ~ Unramified Parameters.

3 Archimedean Parameters

Let N C M(V, K) be a simple submodule, we want to associate to N and ¢ a local parameter; which will be a point

of the variety of conjugacy classes fixed by 7
Yoo H hoo € CU(Z),

where 7 is complex conjugation.
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Proposition 3.1 ([Gro99] Prop 2.4). Let 6 : X* — X* be the involution defined by 0 := w x T where w € W(T) is

the longest element (i.e the element that sends each positive root to its negative). There is an isomorphism
(X*)"=/(1+ 0)X* = Hom(mo(G(R)), EX),

where (X*)0=! .= {x € X*|0(x) = x}-

Via this isomorphism we can view associate to the sign character ¢, an element (which we also denote by ) in
the 2-group (X*)?=1/(1+6)X*. Let £ € (X*)?=! be a lift of po, and let y € (X,)?=! then the inner product between
characters and cocharacters can be used to define an inner product on the Tate cohomology given by

<50007X> = <£,X> mod 2.

To see such an inner product is well defined, we let £’ be another lift then &' = £ + (1 4 0)A, where A € X*(T) then

(€x) =& x) + ({1 +0)\x)
= {&x) + A x) + (0Ax)
= (£, x) + (A x) + (60X, 0x)
= x) +2(\x)
= (£, x) mod 2

Before stating the main result of this section, we need to recall the condition that for G there exists a character
(cocharacter of T') n € X*(T) fixed by Gal(k/Q) such that

(n,a) =1, for all & € A (T).
We assume this condition is satisfied however in general it may not be. Some examples of n : G,,, — T are given below:
n =20, if G is a torus;
n= % Zﬂ>0 BY, if G is simply connected, with 8V a positive coroot.

Proposition 3.2 ([Gro99], Prop 15.2). Let N C M(V,K) be a simple A-submodule, then there is a unique class
hoo = hoo(poo) € CU(Z) that satisfies

1. 2 =1in*G(Z);
2. Tr(heo|§) = Tr(6|X® = Lie(T));
3. X(hoo) = (=1)1F¢X) for all x € Hom(*G,G,,).
The class hoo(poo) is fized by the action Gal(k/Q)™ /(1) = Gal(k™/Q) on C¥,.

Proof. Lift oo € (X*)?=1/(146)X* to an element ¢ € (X*)?=! and view & as a cocharacter of 7' fixed by W xGal(k/Q).
Define the involution from the character group of mo(G(R)), that is h : (X*)?=/(1 + 0)X* —% G(Z) where

hoo := (n(=1) - £(=1),7) € *G(2).

To show (1), we directly we use the fact that the Tate cohomology is a 2-group and 7 acts trivially to compute

h3e = ((=1)&(-1)r(n(-1)§(-1)),7%) = (1,1).

For (3), note that x o7 : G,, — G,, is of the form z + 2" Therefore we have

(o) i= X(1(=DE(-1)) = X(n(=1)X(E(-1)) = (=) (1) (€3 = (~1)(orteern),
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We will also omit the proof (as Gross does in [Gro99]) of the second condition) however Gross claims that one can
prove (2) analogously to how it is proved in [Gro97] for G simply connected.! O
4 Unramified Parameters

Let p be a rational prime, unramified in k. Let p be a factor of p in k, with corresponding Frobenius in Gal(k/Q,)

given by
o(p) : k = k where x — 2 mod p.

Assume that K, := KNG(Qp) C G(Qp) is hyperspecial maximal compact subgroup (For the notion of a hyperspecial
group see the appendix). Define the spherical Hecke algebra at p to be the commutative Z[1/p]-algebra of Z[1/p]-valued
compactly supported functions on the double coset space G(Q,)//K,,, under convolution. Explicitly,

H, = {F 1 G(Qp)/ /Ky, — Z[1/p] ‘ F is compactly supported and Kp—bi—invariant},

equipped with the convolution product
(FP)9) = [ R@RGT)d  geG@,).
G(Qyp)

where the Haar measure dz is normalised so that p(K,) = 1. For an N C M(V, K) there is a homomorphism of
Z[1/p)-algebras ¢, : H, = Og[1/p] by [[Gro97] Prop 8.19 & Eq. 7.5] to which we assign an unramified parameter,

<N7 L1010> = hp € Cea(p)(oE[l/p])’

denoted hy € Cl,(,)(Og[1/p]). Since K, is hyperspecial®the group G is quasi-split over Q,, and split over the maximal
unramified extension of Q,. Let G be a model for G over Z, with G(Z,) = K, and good reduction mod p. Let
T C H C G be a maximal torus contained in a Borel subgroup over Z,, and let W, be the Weyl group of the maximal

split torus Ty C T'. We have an isomorphism given by evaluating the cocharacter at p
X ()% @/ = x (T,) = T(Q,)/T(Z,) which sends A — A(p).
Recall n: T(Q,) — Q, we define a homomorphism
mp + T(Qp)/T(Zy) — Z[1/p]* that sends A(p) — p~ 7.

Let U C B be unipotent radical over Z,. The Satake transform S : H, = H(I(Qp)//I(Zp))WU(p)
SU@) = (o) [ fleudu,
U(Qp)

where du is the Haar measure with U(Z,) normalized to have volume 1. Note that there is an isomorphism
H(T(Q,)//T(Z,))" " = z[1/p][XIP1W™ . Recall Cly(p) := Spec(Z[1/p] [(XZPW7) e can compose

o a(p) S7! p
Z/p XS E 1, £ 01 /p).
Therefore choosing a ¢, and taking the composite ¢, o S™! gives a homomorphism of Z[1/pl-algebras
Hom(Z[1/p][X3"1"™, Op[1/p)).

By the functor-of-points we have an Og[1/p]-valued point hy(p,) € Cly(yy, and it is this point which is the unramified

parameter associated to op.

1Gross uses particular facts about the decomposition of § for the case he considers so its not obvious to me how it can be modified to
give the more general result. If you know how the general proof goes then feel free to let me know, I would be very interested.
2See appendix B for the definition as well as an introduction to models.
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A Algebraic Modular Forms Conventions and Gross’ Condition

Let Z := @Z/nZ and Q := Z ®7 Q. Then Q is the Q-algebra of finite adéles, and A := R x Q is the ring of Adéles
of Q. Let G be a connected, reductive group over Q and let S be the maximal split torus in the center of G, with
S’ denoting the maximal quotient of G which is a split torus. We write G(Q) for the Q-rational points of G, and

PN ~

G(A) := G(R) x G(Q) for the group of adélic points. An element g € G(A) has components g, € G(R) and § € G(Q).
We let G(R)4 denote the connected component of the identity in the Lie group G(R) and let mo(G(R)) := G(R)/G(R)+.
Let V be an irreducible representation of the algebraic group G over Q.

Gross gives a number of equivalent conditions on G which insure that every subgroup I' C G(Q) is finite.
Proposition A.1. [[Gro99], Prop 1.4] The following conditions are all equivalent:
1. Every arithmetic subgroup T' C G(Q) is finite.
2. T = {e} is an arithmetic subgroup of G(Q).
3. G(Q) is a discrete subgroup of the locally compact group G(Q)
4. G(Q) is a discrete subgroup of the locally compact group G(Q) and the quotient space G(Q) \ G(@)
5. S is a mazimal split torus in G over R.
6. The Lie group G(R); = G(R) N G(A);1 is a mazimal compact subgroup of G(R).
7. For every irreducible representation V of G there is a character p: G — Gy, and a positive definite symmetric
bilinear form (—,—) : V. x V. — Q which satisfy
{(yv, ') = p(y) (v, '),
for all v € G(Q) and v,v" € V.

Assume G satisfies the conditions of the above propositions. Fix an irreducible representation V' of G over Q. Let
D :=Endg(V), and let F := Z(Endg(V)), be the center of D. Let u: G — G, be the character of G determined by
V. The Q-vector space of modular forms on G with coefficients in V is the left D-vector space of functions

MV):={f:G(A) — V|f is locally constant on G(A) and f(vyg) =vf(g) for v € G(Q)}.

Since each f in M (V) is locally constant, it is constant on the cosets of an open subgroup of the form G(R); x K,

N

where K C G(Q) is an open compact subgroup. Hence M (V') is the direct limit of the subspaces

MV, K) :={f:GA)/(GR)+ x K) = V[f(vg) =~f(g) for v € G(Q)}.
Let Yk := G(Q) \ G(A)/(G(R), x K) denote the double coset space for a fixed K.
Proposition A.2 ([Gro99], Prop 4.3). The space Y is finite, and the D-vector space M (V, K) is finite dimensional.

We can equip M (V, K) with an inner product. To do this, we first by the above proposition choose the inner

product in (7). Then fix representative {g,} for the classes in Xx. For each « define the arithmetic subgroup
Lo :=G(Q) Nga(GR)1 x K)g;' C G(Q).

Second, we note that p : G — G, takes positive values on G(R). Then we define pa : G(A) — Q* to be the
composition of x with projection onto the first factor (note this takes values in Q). Therefore, for modular forms
[, f' € M(V,K) we define the inner product (—, —)rr(v,x) : M(V, K) x M(V, K) — Q by the formula

o = Y L (F(ga), (g0).

HA (ga)
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If goo € G(R) we can define the linear map T': M (V, K) — M(V, K), given by

T, (f(9)) == f(990)s

which defines an automorphism of M, which depends only on the image of g, in G(R)/G(R)". This gives an action
of the 2-group mo(G(R)) on M, via self adjoint operators:

T =T, = T(goo)-

A more interesting family of operators comes from the Hecke algebra Hg of all locally constant, compactly supported

~

functions F': G(Q) — Q which is K-bi-invariant. Write

KK =[] 4:K
el

as a disjoint union of a finite number of single cosets; the number is finite as K§K is compact and each §; K is open.
Now define, the linear operator 7' : M(V, K) — M(V, K) by

Ty(f(9) == 3 F(99:K),

then T,f is still right K-invariant, as left multiplication by K permutes the right cosets g;K. Hence
Ty(f) € M(V, K). Extending linearly to Hx gives a homomorphism of Q algebras Hx — Endg(M (V, K)).

Let M(V, K) be equipped with the inner product (—, —)as(v,k) of the previous section, and let A C End(M) be
the Q-algebra defined as the span of the operators in D = Endg(V), as well as the automorphisms T, , and the
endomorphisms Ty. M is a semisimple A-module. Let N C M be a simple A-submodule. Then End4 (V) is a finite
division algebra, of finite dimension over Q, and F := Z(End4(N)) is a number field containing F' := Z(Endg(V)).
From the above we have a homomorphism of commutative Q-algebras.

B Hyperspecial Subgroups & Models

Let G be an affine algebraic group over a non-Archimedean local field F' and let G — GL,, be a faithful representation.
Let B be a Dedekind domain with Frac(B) = F. For example if B = Z, for a fixed prime p then Frac(Z,) = Q,. Let
X be an affine scheme over B, then the generic fiber of X is the fiber Xp. If F' is local and B = Op then B has a
unique prime ideal p, we let x(x) = A/p be the residue field at 2 = [p]. The scheme X, ) is the special fiber of X.

Example B.1. If F = Q, then B =Z, and so p = (p) with residue field x(z) = Z,/(p) = F,. The generic fiber of X
is the fiber Xg, and the special fiber is the fiber Xp, .

Given a scheme Y of finite type over F' we say that we can find a model for Y if we can find another scheme )
such that Y is the generic fiber of Y, that is Yr = Spec(F) Xgpec(p) ¥ =Y.

Definition B.2. A model of ) over a Dedekind domain B is an affine scheme of finite type over B isomorphic to
Spec(A) where A C Oy is a B-algebra and A®p F = Oy.

When G is a group scheme we always assume that models G of G are again group schemes and that the generic
fiber of the multiplication map G x G — G and the inversion map G — G are the multiplication map and inversion
map on G, respectively. That is, we assume the group scheme structures on G and G are compatible. We can view
GL,, as an affine group scheme over B, and it is a model of the generic fiber (GL,,) .

Definition B.3. Let F' be a non-Archimedean local field. A reductive group G over F' is unramified if it is quasi-split

and there is a finite degree unramified extension E/F such that Gg is split.

Theorem B.4 ([GH24], Thm 2.4.3). A reductive group G over F is unramified if and only if there exists a model G
of G over Op such that the special fiber of G is reductive.
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Proposition B.5 ([GH24], Thm 2.4.3). If G is a model of G over O such that the special fiber of G is reductive then
G(OF) is a mazimal compact subgroup of G(F).

Definition B.6. A subgroup of G(F) of the form G(Op) for a model G of G over O with reductive special fiber is
called a hyperspecial group.

Example B.7. When G = GL,,, it is clear that GL,,(Z,) is a hyperspecial subgroup of GL,(Q,). It turns out that
all maximal compact subgroups of GL,(Q)) are conjugate to GL,,(Z,).

The following theorem still holds even when G is ramified.

Theorem B.8 ([GH24], Thm 2.4.5). If G is a reductive group over a non-Archimedean local field F' then
1. Every compact subgroup of G(F') is contained in a mazimal compact subgroup.
2. Mazimal compact subgroups of G(F') are open.

3. Every mazimal compact subgroup K < G(F) is of the form G(Or) where G is a smooth model of G.
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